POL Scientific / JBM / Volume 11 / Issue 3 / DOI: 10.14440/jbm.2024.0027
Cite this article
9
Download
18
Citations
86
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

The neuronal density in the rostral pole of substantia nigra pars compacta in Wistar Albino rats from Rijswijk rats: A link to spike-wave seizures

Lidia M. Birioukova1 Darya A. Tsvetaeva1 Inna S. Midzyanovskaya1 Vladimir V. Raevsky1 Evgenia Sitnikova1*
Show Less
1 Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
JBM 2024 , 11(3), e99010022; https://doi.org/10.14440/jbm.2024.0027
Submitted: 12 July 2024 | Accepted: 14 August 2024 | Published: 10 September 2024
© 2024 by the Journal of Biological Methods published by POL Scientific. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

This study aimed to investigate the role of the nigrostriatal dopaminergic system in the modulation of absence epilepsy. Immunochemical analysis of the rostral pole of the substantia nigra pars compacta (SNpc) was conducted on 13 adult male Wistar Albino rats from Rijswijk rats. The rostral pole of the SNpc included the dorsal and lateral parts. The neuronal density in the dorsal part was higher than in the lateral part. The ratio of dopaminergic to non-dopaminergic neurons in the lateral part of the SNpc was 1:1, while in the dorsal part, it was around 1.9:1. All rats exhibited spontaneous spike-wave discharges (SWDs) on their electrocorticograms. SWDs are known to be a hallmark of absence seizures in both human patients and rat models. In this study, we found that the number and duration of SWDs were negatively correlated with dopaminergic and non-dopaminergic neurons only in the lateral part of the SNpc. However, in the dorsal part of the SNpc, no correlations were found between neuronal density and the severity of absence epilepsy. Our findings suggest that the lateral SNpc may be involved in modulating the severity of absence epilepsy in genetically prone subjects. This contributes to a better understanding of the role of the nigrostriatal dopaminergic system in the absence of epilepsy.

Keywords
Absence epilepsy
Electrocorticography
Substantia nigra pars compacta
WAG/Rij
Tyrosine hydroxylase
Spike-wave discharges
Funding
The study was prepared within the state assignment of the Ministry of Education and Science of the Russian Federation to the Institute of Higher Nervous Activity and Neurophysiology of the RAS for 2024-2026. Microscopic studies were carried out using equipment of the Research Resource Center of the Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences.
References
  1. Hirsch E, French J, Scheffer IE, et al. ILAE definition of the idiopathic generalized epilepsy syndromes: Position statement by the ILAE task force on nosology and definitions. Epilepsia. 2022;63:1475-1499. doi: 10.1111/epi.17236

 

  1. Caplan R, Siddarth P, Stahl L, et al. Childhood absence epilepsy: Behavioral, cognitive, and linguistic comorbidities. Epilepsia. 2008;49:1838-1846. doi: 10.1111/j.1528-1167.2008.01680.x

 

  1. Amianto F, Davico C, Bertino F, et al. Clinical and instrumental follow-up of childhood absence epilepsy (CAE): Exploration of prognostic factors. Children (Basel). 2022;9:1452. doi: 10.3390/children9101452

 

  1. Tenney JR, Glauser TA. The current state of absence epilepsy: Can we have your attention? Epilepsy Curr. 2013;13:135-140. doi: 10.5698/1535-7511-13.3.135

 

  1. van Luijtelaar G, van Oijen G. Establishing drug effects on electrocorticographic activity in a genetic absence epilepsy model: Advances and pitfalls. Front Pharmacol. 2020;11:395. doi: 10.3389/fphar.2020.00395

 

  1. Coenen AML, van Luijtelaar ELJM. The WAG/Rij rat model for absence epilepsy: Age and sex factors. Epilepsy Res. 1987;1:297-301. doi: 10.1016/0920-1211(87)90005-2

 

  1. Russo E, Citraro R, Constanti A, et al. Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms and a new theory on seizure development. Neurosci Biobehav Rev. 2016;71:388-408. doi: 10.1016/j.neubiorev.2016.09.017

 

  1. Coenen AML, van Luijtelaar ELJM. Genetic animal models for absence epilepsy: A review of the WAG/Rij strain of rats. Behav Genet. 2003;33:635-655. doi: 10.1023/a:1026179013847

 

  1. Sarkisova K, van Luijtelaar G. The WAG/Rij strain: A genetic animal model of absence epilepsy with comorbidity of depressiony. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:854-876. doi: 10.1016/j.pnpbp.2010.11.010

 

  1. Smyk MK, van Luijtelaar G. Circadian rhythms and epilepsy: A suitable case for absence epilepsy. Front Neurol. 2020;11:245. doi: 10.3389/fneur.2020.00245

 

  1. van Luijtelaar ELJM, Coenen AML. Two types of electrocortical paroxysms in an inbred strain of rats. Neurosci Lett. 1986;70:393-397. doi: 10.1016/0304-3940(86)90586-0

 

  1. van Luijtelaar G, Coenen A. Absence seizures. Genetic models of absence epilepsy: New concepts and insights. In: Schwartzkroin PA, editor. Encyclopedia of Basic Epilepsy Research. Netherlands: Elsevier; 2009. p. 1-8. doi: 10.1016/B978-012373961-2.00199-5

 

  1. Leo A, De Caro C, Nesci V, et al. WAG/Rij rat model: A resource for the pharmacology of epileptogenesis and related neurological/psychiatric comorbidities. Neurosci Res Notes. 2019;1:18-34. doi: 10.31117/neuroscirn.v1i3.22

 

  1. Gareri P, Condorelli D, Belluardo N, et al. Antiabsence effects of carbenoxolone in two genetic animal models of absence epilepsy (WAG/Rij rats and lh/lh mice). Neuropharmacology. 2005;49:551-563. doi: 10.1016/j.neuropharm.2005.04.012

 

  1. Citraro R, Leo A, Franco V, et al. Perampanel effects in the WAG/Rij rat model of epileptogenesis, absence epilepsy, and comorbid depressive-like behavior. Epilepsia. 2017;58:231-238. doi: 10.1111/epi.13629

 

  1. Leo A, Nesci V, Tallarico M, et al. IL-6 receptor blockade by tocilizumab has anti-absence and anti-epileptogenic effects in the WAG/Rij rat model of absence epilepsy. Neurotherapeutics. 2020;17:2004-2014. doi: 10.1007/s13311-020-00893-8

 

  1. Sitnikova E. Behavioral and cognitive comorbidities in genetic rat models of absence epilepsy (focusing on GAERS and WAG/Rij rats). Biomedicines. 2024;12:122. doi: 10.3390/biomedicines12010122

 

  1. Sarkisova K, van Luijtelaar G. The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci Rep. 2022;13:436-468. doi: 10.1016/j.ibneur.2022.10.012

 

  1. Midzianovskaia IS, Kuznetsova GD, Coenen AML, Spiridonov AM, Van Luijtelaar ELJM. Electrophysiological and pharmacological characteristics of two types of spike-wave discharges in WAG/Rij rats. Brain Res. 2001;911:62-70. doi: 10.1016/S0006-8993(01)02705-6

 

  1. Sitnikova E, van Luijtelaar G. Electroencephalographic characterization of spike-wave discharges in cortex and thalamus in WAG/Rij rats. Epilepsia. 2007;48:2296-311. doi: 10.1111/j.1528-1167.2007.01250.x

 

  1. De Bruin NMWJ, Van Luijtelaar ELJM, Jansen SJ, Cools AR, Ellenbroek BA. Dopamine characteristics in different rat genotypes: The relation to absence epilepsy. Neurosci Res. 2000;38:165-173. doi: 10.1016/S0168-0102(00)00154-1

 

  1. De Bruin NMWJ, Van Luijtelaar ELJM, Cools AR, Ellenbroek BA. Dopamine characteristics in rat genotypes with distinct susceptibility to epileptic activity: Apomorphine-induced stereotyped gnawing and novelty/amphetamine-induced locomotor stimulation. Behav Pharmacol. 2001;12:517-525. doi: 10.1097/00008877-200111000-00013

 

  1. Cools AR, Peeters BWMM. Differences in spike-wave discharges in two rat selection lines characterized by opposite dopaminergic activities. Neurosci Lett. 1992;134:253-256. doi: 10.1016/0304-3940(92)90528-F

 

  1. Sarkisova KY, Kulikov MA, Kudrin VS, Midzyanovskaya IS, Birioukova LM. Age-related changes in behavior, in monoamines and their metabolites content, and in density of Dl and D2 dopamine receptors in the brain structures of WAG/ Rij rats with depression-like pathology. Zh Vyss Nerv Deiat Im IP Pavlov. 2014;64:668-685. doi: 10.7868/S0044467714060094

 

  1. Birioukova LM, Sitnikova EY, Kulikov MA, Raevsky VV. Compensatory changes in the brain dopaminergic system of WAG/Rij rats genetically predisposed to absence epilepsy. Bull Exp Biol Med. 2016;161:662-665. doi: 10.1007/s10517-016-3480-5

 

  1. Birioukova LM, Midzyanovskaya IS, Lensu S, Tuomisto L, Van Luijtelaar G. Distribution of D1-like and D2-like dopamine receptors in the brain of genetic epileptic WAG/Rij rats. Epilepsy Res. 2005;63:89-96. doi: 10.1016/j.eplepsyres.2004.12.001

 

  1. Sitnikova E, Kulikova S, Birioukova L, Raevsky VV. Cellular neuropathology of absence epilepsy in the neocortex: A population of glial cells rather than neurons is impaired in genetic rat model. Acta Neurobiol Exp (Wars). 2011;71:263-268. doi: 10.55782/ane-2011-1846

 

  1. Wise RA, Jordan CJ. Dopamine, behavior, and addiction. J Biomed Sci. 2021;28:83. doi: 10.1186/s12929-021-00779-7

 

  1. Björklund A, Dunnett SB. Fifty years of dopamine research. Trends Neurosci. 2007;30:185-187. doi: 10.1016/j.tins.2007.03.004

 

  1. Björklund A, Dunnett SB. Dopamine neuron systems in the brain: An update. Trends Neurosci. 2007;30:194-202. doi: 10.1016/j.tins.2007.03.006

 

  1. Luo SX, Huang EJ. Dopaminergic neurons and brain reward pathways: From neurogenesis to circuit assembly. Am J Pathol. 2016;186:478-488. doi: 10.1016/J.AJPATH.2015.09.023

 

  1. Berridge KC, Robinson TE. What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Res Rev. 1998;28:306-369. doi: 10.1016/S0165-0173(98)00019-8

 

  1. Cumming P. The life history of dopamine. In: Imaging Dopamine. England: Cambridge University Press; 2009. p. 5-18. doi: 10.1017/cbo9780511575853.003

 

  1. Sitnikova EI, Egorova TN, Raevskiĭ VV. Reduction of the number of neurons in substantia nigra (Pars compacta) positively correlates with a reduction of seizure activity in WAG/Rij rats. Zh Vyssh Nerv Deiat Im I P Pavlova. 2012;62:619-628.

 

  1. Sitnikova E, Rutskova EM, Tsvetaeva D, Raevsky VV. Spike-wave seizures, slow-wave sleep EEG and morphology of substantia nigra pars compacta in WAG/Rij rats with genetic predisposition to absence epilepsy. Brain Res Bull. 2021;174:63-71. doi: 10.1016/j.brainresbull.2021.06.003

 

  1. Daubner SC, Le T, Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys. 2011;508:1-12. doi: 10.1016/J.ABB.2010.12.017

 

  1. Cumming P. The assay of tyrosine hydroxylase. Imaging Dopamine. 2009;1015:29-44. doi: 10.1017/cbo9780511575853.005

 

  1. Fu Y, Yuan Y, Halliday G, Rusznák Z, Watson C, Paxinos G. A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse. Brain Struct Funct. 2012;217:591-612. doi: 10.1007/s00429-011-0349-2

 

  1. Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain. 1999;122:1437-1448. doi: 10.1093/brain/122.8.1437

 

  1. Poulin JF, Caronia G, Hofer C, et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat Neurosci. 2018;21:1260-1271. doi: 10.1038/s41593-018-0203-4

 

  1. Poulin JF, Zou J, Drouin-Ouellet J, Kim KYA, Cicchetti F, Awatramani RB. Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep. 2014;9:930-943. doi: 10.1016/j.celrep.2014.10.008

 

  1. Tolve M, Ulusoy A, Patikas N, et al. The transcription factor BCL11A defines distinct subsets of midbrain dopaminergic neurons. Cell Rep. 2021;36:109697. doi: 10.1016/j.celrep.2021.109697

 

  1. Pereira Luppi M, Azcorra M, Caronia-Brown G, et al. Sox6 expression distinguishes dorsally and ventrally biased dopamine neurons in the substantia nigra with distinctive properties and embryonic origins. Cell Rep. 2021;37:109975. doi: 10.1016/j.celrep.2021.109975

 

  1. Garritsen O, van Battum EY, Grossouw LM, Pasterkamp RJ. Development, wiring and function of dopamine neuron subtypes. Nat Rev Neurosci. 2023;24:134-152. doi: 10.1038/s41583-022-00669-3

 

  1. González-Hernández T, Afonso-Oramas D, Cruz-Muros I. Phenotype, Compartmental Organization and Differential Vulnerability of Nigral Dopaminergic Neurons. Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra. Vienna: Springer Vienna; 2009. p. 21-37. doi: 10.1007/978-3-211-92660-4_2

 

  1. Khudoerkov RM, Voronkov DN, Dikalova YV. Quantitative morphochemical characterization of the neurons in substantia nigra of rat brain and its volume reconstruction. Bull Exp Biol Med. 2014;156:861-864. doi: 10.1007/s10517-014-2470-8

 

  1. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 6th ed. Netherlands: Elsevier; 2007.

 

  1. IHC Staining Protocol Paraffin, Frozen and Free-Floating Sections 2 IHC Staining Protocol Contents. Available from: https://docs.abcam.com/pdf/protocols/ihc-immunostaining. pdf [Last accessed on 2024 Jun 24].

 

  1. Tugba EK, Medine GIO, Ozlem A, Deniz K, Filiz OY. Prolongation of absence seizures and changes in serotonergic and dopaminergic neurotransmission by nigrostriatal pathway degeneration in genetic absence epilepsy rats. Pharmacol Biochem Behav. 2022;213:173317. doi: 10.1016/j.pbb.2021.173317

 

  1. Arbuthnott GW, Wickens J. Space, time and dopamine. Trends Neurosci. 2007;30:62-69. doi: 10.1016/j.tins.2006.12.003

 

  1. Kawazoe T, Sugaya K, Nakata Y, Okitsu M, Takahashi K. Two distinct degenerative types of nigrostriatal dopaminergic neuron in the early stage of parkinsonian disorders. Clin Park Relat Disord. 2024;10:100242. doi: 10.1016/j.prdoa.2024.100242

 

  1. Bogerts B, Hantsch J, Herzer M. A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol Psychiatry. 1983;18:951-969.
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific