AccScience Publishing / JBM / Online First / DOI: 10.14440/jbm.2025.0119
RESEARCH ARTICLE

Bacterial identification using MALDI-TOF mass spectrometry in positive blood cultures: A pilot study

Smriti Srivastava1† Akshay Shankar2† Neha Sharad1 Aparna Ningombam2 Kamran Farooque3 Purva Mathur2*
Show Less
1 Department of Microbiology, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi 110029, India
2 Department of Lab Medicine, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi 110029, India
3 Department of Orthopedics, Jai Prakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi 110029, India
Submitted: 20 November 2024 | Revised: 25 December 2024 | Accepted: 14 February 2025 | Published: 12 March 2025
© 2025 by the Journal of Biological Methods published by POL Scientific. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Background: Early pathogen identification in the bloodstream has long been a key focus for microbiologists and clinicians, given its crucial role in patient management. Matrix-assisted laser desorption ionization-time of flight mass spectrometry has emerged as a valuable tool for the direct and rapid identification of organisms from positive blood cultures. Objective: This study aimed to evaluate the accuracy, productivity, and feasibility of two methods for the rapid detection of bloodstream infections. Methods: Two methods were employed in this study: One based on differential centrifugation and the other using a lysis buffer. Results: The addition of a lysis buffer, sodium dodecyl sulfate (SDS), to the blood culture broth resulted in the identification of a greater number of microorganisms (Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumonia). Conclusion: The application of SDS into culture broths is user-friendly and can be easily integrated into routine blood culture processing, allowing for species-level identification within hours of a positive BacT/ALERT signal.

Keywords
MALDI-TOF mass spectrometry
Blood culture
Bloodstream infection
Rapid diagnosis
Funding
None.
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. Wilson ML. Development of new methods for detecting bloodstream pathogens. CMI. 2020;26(3):319-324. doi: 10.1016/j.cmi.2019.08.002

 

  1. Van Belkum A, Welker M, Pincus D, Charrier JP, Girard V. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiology: What are the current issues?. Ann Lab Med. 2017,37(6):475. doi: 10.3343/alm.2017.37.6.475

 

  1. Qiao L. MALDI-TOF MS for pathogenic bacteria analysis. Int J Mass Spectrom. 2022;482:116935. doi: 10.1016/j.ijms.2022.116935

 

  1. Hasan N, Guo Z, Wu HF. Large protein analysis of Staphylococcus aureus and Escherichia coli by MALDI TOF mass spectrometry using amoxicillin functionalized magnetic nanoparticles. Anal Bioanal Chem. 2016;408:6269-6281. doi: 10.1007/s00216-016-9730-6

 

  1. Hasan N, Gopal J, Wu HF. Surface pretreatment effects on titanium chips for the adhesion of pathogenic bacteria in the MALDI-TOF MS. Appl Surf Sci. 2014;314:52-63. doi: 10.1016/j.apsusc.2014.06.045

 

  1. Templier V, Livache T, Boisset S, et al. Biochips for direct detection and identification of bacteria in blood culture-like conditions. Sci Rep. 2017;7(1):9457. doi: 10.1038/s41598-017-10072-z

 

  1. Bhuyan S, Yadav M, Giri SJ, et al. Microliter spotting and micro-colony observation: A rapid and simple approach for counting bacterial colony forming units. J Microbiol Methods. 2023;207:106707. doi: 10.1101/2022.01.26.477842

 

  1. Available from: https://www.accessdata.fda.gov/cdrh_docs/ reviews/k124067.pdf [Last accessed on 2024 Dec 20].

 

  1. Sharma M, Gautam V, Mahajan M, Rana S, Majumdar M, Ray P. Direct identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) from positive blood culture bottles: An opportunity to customize growth conditions for fastidious organisms causing bloodstream infections. Indian Med Res J. 2017;146(4):541-544. doi: 10.4103/ijmr.IJMR_823_16

 

  1. Tanner H, Evans JT, Gossain S, Hussain A. Evaluation of three sample preparation methods for the direct identification of bacteria in positive blood cultures by MALDI-TOF. BMC Res Notes. 2017;10:1-8. doi: 10.1186/s13104-016-2366-y

 

  1. Buchan BW, Riebe KM, Ledeboer NA. Comparison of the MALDI Biotyper system using Sepsityper specimen processing to routine microbiological methods for identification of bacteria from positive blood culture bottles. J Clin Microbiol. 2012;50(2):346-352. doi: 10.1128/jcm.05021-11

 

  1. Tsuchida S, Umemura H, Nakayama T. Current status of matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS) in clinical diagnostic microbiology. Molecules. 2020;25(20):4775. doi: 10.3390/molecules25204775

 

  1. Perše G, Samošćanec I, Bošnjak Z, Budimir A, Kuliš T, Mareković I. Sepsityper® kit versus in-house method in rapid identification of bacteria from positive blood cultures by MALDI-TOF mass spectrometry. Life. 2022;12(11):1744. doi: 10.3390/life12111744

 

  1. Papagiannopoulou C, Parchen R, Rubbens P, Waegeman W. Fast pathogen identification using single-cell matrix-assisted laser desorption/ionization-aerosol time-of-flight mass spectrometry data and deep learning methods. Anal Chem. 2020;92(11):7523-7531. doi: 10.1021/acs.analchem.9b05806

 

  1. Ghosh AK, Paul S, Sood P, et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the rapid identification of yeasts causing bloodstream infections. Clin Microbiol Infect. 2015;21(4):372-378. doi: 10.1016/j.cmi.2014.11.009

 

  1. World Health Organization. Global Antimicrobial Resistance Surveillance System: Manual for Early Implementation. Geneva: World Health Organization; 2015.

 

  1. Leenstra T, Tambic A, van de Sande-Bruinsma N, Nahrgang S. Proof-of-Principle Antimicrobial Resistance Routine Diagnostics Study (PoP-study) Protocol. Version 1.1; 2016.

 

  1. Indian Council of Medical Research. National Essential Diagnostics List. New Delhi: ICMR; 2019.

 

  1. World Health Organization. Diagnostic Stewardship: A Guide to Implementation in Antimicrobial Resistance Surveillance Sites (No. WHO/DGO/AMR/2016.3). Geneva: World Health Organization; 2016.

 

  1. Dik JW, Poelman R, Friedrich AW, et al. An integrated stewardship model: antimicrobial, infection prevention and diagnostic (AID). Future Microbiol. 2016;11(1):93-102. doi: 10.2217/fmb.15.99

 

  1. Azrad M, Keness Y, Nitzan O, et al. Cheap and rapid in-house method for direct identification of positive blood cultures by MALDI-TOF MS technology. BMC Infect Dis. 2019;19: 1-7. doi: 10.1186/s12879-019-3709-9

 

  1. Marinach-Patrice C, Fekkar A, Atanasova R, et al. Rapid species diagnosis for invasive candidiasis using mass spectrometry. PLoS One. 2010;5(1):e8862. doi: 10.1371/journal.pone.0008862

 

  1. Shehadul Islam M, Aryasomayajula A, Selvaganapathy PR. A review on macroscale and microscale cell lysis methods. Micromachines. 2017;8(3):83. doi: 10.3390/mi8030083

 

  1. Das L, Murthy V, Varma AK. Comprehensive analysis of low molecular weight serum proteome enrichment for mass spectrometric studies. ACS Omega. 2020;5(44):28877-28888. doi: 10.1021/acsomega.0c04568

 

  1. Davami F, Eghbalpour F, Nematollahi L, Barkhordari F, Mahboudi F. Effects of peptone supplementation in different culture media on growth, metabolic pathway and productivity of CHO DG44 cells; a new insight into amino acid profiles. Iran Biomed J. 2015;19(4):194. doi: 10.7508/ibj.2015.04.002
Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific