POL Scientific / JBM / Volume 9 / Issue 1 / DOI: 10.14440/jbm.2022.381
Cite this article
32
Citations
117
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
PROTOCOLS

Site-specific nanobody-oligonucleotide conjugation for super-resolution imaging

Laura Teodori1,2 Marjan Omer1,2 Anders Märcher1,3 Mads K. Skaanning1,3 Veronica L. Andersen1,3 Jesper S. Nielsen1,2 Emil Oldenburg1,2 Yuchen Lin1 Kurt V. Gothelf1,3,4 Jørgen Kjems1,2,3
JBM 2022 , 9(1), 1;
Published: 1 March 2022
© 2022 by the author. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Camelid single-domain antibody fragments, also called nanobodies, constitute a class of binders that are small in size (~15 kDa) and possess antigen-binding properties similar to their antibody counterparts. Facile production of recombinant nanobodies in several microorganisms has made this class of binders attractive within the field of molecular imaging. Particularly, their use in super-resolution microscopy has improved the spatial resolution of molecular targets due to a smaller linkage error. In single-molecule localization microscopy techniques, the effective spatial resolution can be further enhanced by site-specific fluorescent labeling of nanobodies owing to a more homogeneous protein-to-fluorophore stoichiometry, reduced background staining and a known distance between dye and epitope. Here, we present a protocol for site-specific bioconjugation of DNA oligonucleotides to three distinct nanobodies expressed with an N- or C-terminal unnatural amino acid, 4-azido-L-phenylalanine (pAzF). Using copper-free click chemistry, the nanobody-oligonucleotide conjugation reactions were efficient and yielded highly pure bioconjugates. Target binding was retained in the bioconjugates, as demonstrated by bio-layer interferometry binding assays and the super-resolution microscopy technique, DNA points accumulation for imaging in nanoscale topography (PAINT). This method for site-specific protein-oligonucleotide conjugation can be further extended for applications within drug delivery and molecular targeting where site-specificity and stoichiometric control are required.

Keywords
bioconjugation
click chemistry
site-specificity
nanobodies
super-resolution microscopy
References

1. Kijanka M, Dorresteijn B, Oliveira S, van Bergen en Henegouwen PM. Nanobody-based cancer therapy of solid tumors. Nanomedicine (Lond). 2015 Jan;10(1):161–74. https://doi.org/10.2217/nnm.14.178 PMID:25597775
2. Chakravarty R, Goel S, Cai W. Nanobody: the “magic bullet” for molecular imaging? Theranostics. 2014 Jan;4(4):386–98. https://doi.org/10.7150/thno.8006 PMID:24578722
3. Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82(1):775–97. https://doi.org/10.1146/annurev-biochem-063011-092449 PMID:23495938
4. Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J, Manley S, et al. Single-molecule localization microscopy. Nature Reviews Methods Primers. 2021;1(1):39. https://doi.org/10.1038/s43586-021-00038-x.
5. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006 Sep;313(5793):1642–5. https://doi.org/10.1126/science.1127344 PMID:16902090
6. Hess ST, Girirajan TP, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J. 2006 Dec;91(11):4258–72. https://doi.org/10.1529/biophysj.106.091116 PMID:16980368
7. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006 Oct;3(10):793–5. https://doi.org/10.1038/nmeth929 PMID:16896339
8. Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl. 2008;47(33):6172–6. https://doi.org/10.1002/anie.200802376 PMID:18646237
9. Jungmann R, Steinhauer C, Scheible M, Kuzyk A, Tinnefeld P, Simmel FC. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 2010 Nov;10(11):4756–61. https://doi.org/10.1021/nl103427w PMID:20957983
10. Pleiner T, Bates M, Trakhanov S, Lee C-T, Schliep JE, Chug H, et al. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. elife. 2015;4:e11349.
11. Ries J, Kaplan C, Platonova E, Eghlidi H, Ewers H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods. 2012 Jun;9(6):582–4. https://doi.org/10.1038/nmeth.1991 PMID:22543348
12. Agasti SS, Wang Y, Schueder F, Sukumar A, Jungmann R, Yin P. DNA-barcoded labeling probes for highly multiplexed Exchange-PAINT imaging. Chem Sci (Camb). 2017 Apr;8(4):3080–91. https://doi.org/10.1039/C6SC05420J PMID:28451377
13. Sograte-Idrissi S, Schlichthaerle T, Duque-Afonso CJ, Alevra M, Strauss S, Moser T, et al. Circumvention of common labelling artefacts using secondary nanobodies. Nanoscale. 2020 May;12(18):10226–39. https://doi.org/10.1039/D0NR00227E PMID:32356544
14. Schlichthaerle T, Strauss MT, Schueder F, Auer A, Nijmeijer B, Kueblbeck M, et al. Direct visualization of single nuclear pore complex proteins using genetically‐encoded probes for DNA‐PAINT. Angew Chem Int Ed Engl. 2019 Sep;58(37):13004–8. https://doi.org/10.1002/anie.201905685 PMID:31314157
15. Massa S, Xavier C, De Vos J, Caveliers V, Lahoutte T, Muyldermans S, et al. Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging. Bioconjug Chem. 2014 May;25(5):979–88. https://doi.org/10.1021/bc500111t PMID:24815083
16. Fabricius V, Lefèbre J, Geertsema H, Marino SF, Ewers H. Rapid and efficient C-terminal labeling of nanobodies for DNA-PAINT. J Phys D Appl Phys. 2018;51(47):474005. https://doi.org/10.1088/1361-6463/aae0e2.
17. Chatterjee A, Sun SB, Furman JL, Xiao H, Schultz PG. A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry. 2013 Mar;52(10):1828–37. https://doi.org/10.1021/bi4000244 PMID:23379331
18. Vaneycken I, Devoogdt N, Van Gassen N, Vincke C, Xavier C, Wernery U, et al. Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J. 2011 Jul;25(7):2433–46. https://doi.org/10.1096/fj.10-180331 PMID:21478264
19. Broisat A, Hernot S, Toczek J, De Vos J, Riou LM, Martin S, et al. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res. 2012 Mar;110(7):927–37. https://doi.org/10.1161/CIRCRESAHA.112.265140 PMID:22461363
20. Jungmann R, Avendaño MS, Dai M, Woehrstein JB, Agasti SS, Feiger Z, et al. Quantitative super-resolution imaging with qPAINT. Nat Methods. 2016 May;13(5):439–42. https://doi.org/10.1038/nmeth.3804 PMID:27018580
21. Richardson MB, Brown DB, Vasquez CA, Ziller JW, Johnston KM, Weiss GA. Synthesis and Explosion Hazards of 4-Azido-l-phenylalanine. J Org Chem. 2018 Apr;83(8):4525–36. https://doi.org/10.1021/acs.joc.8b00270 PMID:29577718
22. de Marco A. Recombinant expression of nanobodies and nanobody-derived immunoreagents. Protein Expr Purif. 2020 Aug;172:105645. https://doi.org/10.1016/j.pep.2020.105645 PMID:32289357
23. Nossal NG, Heppel LA. The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J Biol Chem. 1966 Jul;241(13):3055–62. https://doi.org/10.1016/S0021-9258(18)96497-5 PMID:4287907
24. Strauss S, Jungmann R. Up to 100-fold speed-up and multiplexing in optimized DNA-PAINT. Nat Methods. 2020 Aug;17(8):789–91. https://doi.org/10.1038/s41592-020-0869-x PMID:32601424
25. Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004 Nov;126(46):15046–7. https://doi.org/10.1021/ja044996f PMID:15547999
26. Aitken CE, Marshall RA, Puglisi JD. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J. 2008 Mar;94(5):1826–35. https://doi.org/10.1529/biophysj.107.117689 PMID:17921203
27. Schnitzbauer J, Strauss MT, Schlichthaerle T, Schueder F, Jungmann R. Super-resolution microscopy with DNA-PAINT. Nat Protoc. 2017 Jun;12(6):1198–228. https://doi.org/10.1038/nprot.2017.024 PMID:28518172
28. de Marco A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact. 2009 May;8(1):26. https://doi.org/10.1186/1475-2859-8-26 PMID:19442264
29. Georgiou G, Valax P. Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol. 1996 Apr;7(2):190–7. https://doi.org/10.1016/S0958-1669(96)80012-7 PMID:8791338
30. Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature. 1995 Apr;374(6522):555–9. https://doi.org/10.1038/374555a0 PMID:7700383
31. Tokunaga M, Kitamura K, Saito K, Iwane AH, Yanagida T. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun. 1997 Jun;235(1):47–53. https://doi.org/10.1006/bbrc.1997.6732 PMID:9196033
32. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Primers. 2019 Sep;5(1):66. https://doi.org/10.1038/s41572-019-0111-2 PMID:31548545
33. Gall VA, Philips AV, Qiao N, Clise-Dwyer K, Perakis AA, Zhang M, et al. Trastuzumab Increases HER2 Uptake and Cross-Presentation by Dendritic Cells. Cancer Res. 2017 Oct;77(19):5374–83. https://doi.org/10.1158/0008-5472.CAN-16-2774 PMID:28819024
34. Zavoiura O, Brunner B, Casteels P, Zimmermann L, Ozog M, Boutton C, et al. Nanobody-siRNA Conjugates for Targeted Delivery of siRNA to Cancer Cells. Mol Pharm. 2021 Mar;18(3):1048–60. https://doi.org/10.1021/acs.molpharmaceut.0c01001 PMID:33444501
35. Andersen VL, Vinther M, Kumar R, Ries A, Wengel J, Nielsen JS, et al. A self-assembled, modular nucleic acid-based nanoscaffold for multivalent theranostic medicine. Theranostics. 2019 Apr;9(9):2662–77. https://doi.org/10.7150/thno.32060 PMID:31131060
36. Koch V, Rüffer HM, Schügerl K, Innertsberger E, Menzel H, Weis J. Effect of antifoam agents on the medium and microbial cell properties and process performance in small and large reactors. Process Biochem. 1995;30(5):435–46. https://doi.org/10.1016/0032-9592(94)00029-8.
37. Holmes W, Smith R, Bill R. Evaluation of antifoams in the expression of a recombinant FC fusion protein in shake flask cultures of Saccharomyces cerevisiae & Pichia pastoris. Microb Cell Fact. 2006;5(1):1–3.

Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TAB, Published by POL Scientific