POL Scientific / JBM / Volume 9 / Issue 1 / DOI: 10.14440/jbm.2022.379
Cite this article
1
Download
36
Citations
110
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
PROTOCOLS

Development of a reproducible porcine model of infected burn wounds

Sayf Al-deen Said1 Samreen Jatana1 András K. Ponti1 Erin E. Johnson1,2 Kimberly A. Such3 Megan T. Zangara1,4 Maria Madajka5 Francis Papay5 Christine McDonald1,4
Show Less
1 Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
2 Department of Biology, John Carroll University, University Heights, OH 44118, USA
3 3The Biological Research Unit, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
4 Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
5 Department of Plastic Surgery, Dermatology & Plastic Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA
JBM 2022 , 9(1), 1;
Published: 21 February 2022
© 2022 by the author. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Severe burns are traumatic and physically debilitating injuries with a high rate of mortality. Bacterial infections often complicate burn injuries, which presents unique challenges for wound management and improved patient outcomes. Currently, pigs are used as the gold standard of pre-clinical models to study infected skin wounds due to the similarity between porcine and human skin in terms of structure and immunological response. However, utilizing this large animal model for wound infection studies can be technically challenging and create issues with data reproducibility. We present a detailed protocol for a porcine model of infected burn wounds based on our experience in creating and evaluating full thickness burn wounds infected with Staphylococcus aureus on six pigs. Wound healing kinetics and bacterial clearance were measured over a period of 27 d in this model. Enumerated are steps to achieve standardized wound creation, bacterial inoculation, and dressing techniques. Systematic evaluation of wound healing and bacterial colonization of the wound bed is also described. Finally, advice on animal housing considerations, efficient bacterial plating procedures, and overcoming common technical challenges is provided. This protocol aims to provide investigators with a step-by-step guide to execute a technically challenging porcine wound infection model in a reproducible manner. Accordingly, this would allow for the design and evaluation of more effective burn infection therapies leading to better strategies for patient care.

Keywords
burn wounds
infection
porcine model
protocol
wound healing
References

1. Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gibran NS, Logsetty S. Burn injury. Nat Rev Dis Primers. 2020 Feb;6(1):11. https://doi.org/10.1038/s41572-020-0145-5 PMID:32054846
2. Seaton M, Hocking A, Gibran NS. Porcine models of cutaneous wound healing. ILAR J. 2015;56(1):127–38. https://doi.org/10.1093/ilar/ilv016 PMID:25991704
3. Moins-Teisserenc H, Cordeiro DJ, Audigier V, Ressaire Q, Benyamina M, Lambert J, et al. Severe Altered Immune Status After Burn Injury Is Associated With Bacterial Infection and Septic Shock. Front Immunol. 2021;12:586195. https://doi.org/10.3389/fimmu.2021.586195 PMID: 33737924
4. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19(2):403-34. https://doi.org/10.1128/CMR.19.2.403-434.2006 PMID:16614255
5. Lachiewicz AM, Hauck CG, Weber DJ, Cairns BA, van Duin D. Bacterial Infections After Burn Injuries: Impact of Multidrug Resistance. Clin Infect Dis. 2017;65(12):2130-6. https://doi.org/10.1093/cid/cix682 PMID:29194526
6. Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol. 2015 Jul;66(1):14–21. https://doi.org/10.1016/j.molimm.2014.10.023 PMID:25466611
7. Dawson HD, Loveland JE, Pascal G, Gilbert JG, Uenishi H, Mann KM, et al. Structural and functional annotation of the porcine immunome. BMC Genomics. 2013;14:332. https://doi.org/10.1186/1471-2164-14-332 PMID:23676093
8. Singh M, Nuutila K, Minasian R, Kruse C, Eriksson E. Development of a precise experimental burn model. Burns. 2016 Nov;42(7):1507–12. https://doi.org/10.1016/j.burns.2016.02.019 PMID:27450518
9. Wang XQ, Kempf M, Liu PY, Cuttle L, Chang HE, Kravchuk O, et al. Conservative surgical debridement as a burn treatment: supporting evidence from a porcine burn model. Wound Repair Regen. 2008 Nov-Dec;16(6):774–83. https://doi.org/10.1111/j.1524-475X.2008.00428.x PMID:19128248
10. Cuttle L, Kempf M, Phillips GE, Mill J, Hayes MT, Fraser JF, et al. A porcine deep dermal partial thickness burn model with hypertrophic scarring. Burns. 2006 Nov;32(7):806–20. https://doi.org/10.1016/j.burns.2006.02.023 PMID:16884856
11. Jensen LK, Henriksen NL, Jensen HE. Guidelines for porcine models of human bacterial infections. Lab Anim. 2019 Apr;53(2):125–36. https://doi.org/10.1177/0023677218789444 PMID:30089438
12. Andrews CJ, Cuttle L. Comparing the reported burn conditions for different severity burns in porcine models: a systematic review. Int Wound J. 2017;14(6):1199-212. https://doi.org/10.1111/iwj.12786 PMID:28736990
13. Andrews CJ, Kempf M, Kimble R, Cuttle L. Development of a Consistent and Reproducible Porcine Scald Burn Model. PLoS One. 2016;11(9):e0162888. https://doi.org/10.1371/journal.pone.0162888 PMID:27612153
14. Gibson ALF, Carney BC, Cuttle L, Andrews CJ, Kowalczewski CJ, Liu A, et al. Coming to Consensus: What Defines Deep Partial Thickness Burn Injuries in Porcine Models? J Burn Care Res. 2021;42(1):98-109. https://doi.org/10.1093/jbcr/iraa132 PMID:32835360
15. Kempf M, Cuttle L, Liu PY, Wang XQ, Kimble RM. Important improvements to porcine skin burn models, in search of the perfect burn. Burns. 2009 May;35(3):454–5. https://doi.org/10.1016/j.burns.2008.06.013 PMID:18947931
16. Wardhana A, Lumbuun RFM, Kurniasari D. How to create burn porcine models: a systematic review. Ann Burns Fire Disasters. 2018;31(1):65-72 PMID:30174576
17. Branski LK, Mittermayr R, Herndon DN, Norbury WB, Masters OE, Hofmann M, et al. A porcine model of full-thickness burn, excision and skin autografting. Burns. 2008;34(8):1119-27. https://doi.org/10.1016/j.burns.2008.03.013 PMID:18617332
18. Deng X, Chen Q, Qiang L, Chi M, Xie N, Wu Y, et al. Development of a Porcine Full-Thickness Burn Hypertrophic Scar Model and Investigation of the Effects of Shikonin on Hypertrophic Scar Remediation. Front Pharmacol. 2018;9:590. https://doi.org/10.3389/fphar.2018.00590 PMID:29922164
19. Jensen LK, Johansen ASB, Jensen HE. Porcine Models of Biofilm Infections with Focus on Pathomorphology. Front Microbiol. 2017;8:1961. https://doi.org/10.3389/fmicb.2017.01961 PMID:29067019
20. Zurawski DV, Black CC, Alamneh YA, Biggemann L, Banerjee J, Thompson MG, et al. A Porcine Wound Model of Acinetobacter baumannii Infection. Adv Wound Care (New Rochelle). 2019;8(1):14-27. https://doi.org/10.1089/wound.2018.0786 PMID: 30705786
21. Gusarov I, Shatalin K, Starodubtseva M, Nudler E. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science. 2009;325(5946):1380-4. https://doi.org/10.1126/science.1175439 PMID:19745150
22. Becerra SC, Roy DC, Sanchez CJ, Christy RJ, Burmeister DM. An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue. BMC Res Notes. 2016 Apr;9(1):216. https://doi.org/10.1186/s13104-016-1902-0 PMID:27071769
23. Guo HF, Mohd Ali R, Abd Hamid R, Chang SK, Zainal Z, Khaza'ai H. A new histological score grade for deep partial-thickness burn wound healing process. Int J Burns Trauma. 2020;10(5):218-24 PMID:33224609
24. Centers for Disease Control and Prevention, National Institutes of Health. Biosafety in Microbiological and Biomedical Laboratories. 6th Edition, June 2020

Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TAB, Published by POL Scientific