POL Scientific / JBM / Volume 3 / Issue 1 / DOI: 10.14440/jbm.2016.97
Cite this article
1
Download
88
Citations
277
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
PROTOCOLS

A surface plasmon resonance-based method for monitoring interactions between G protein-coupled receptors and interacting proteins

Nikolas Stroth1
Show Less
1 Center for Molecular Medicine, Karolinska Institute and University Hospital, Stockholm, Sweden
Published: 28 January 2016
© 2016 by the author. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract
The present protocol describes a method by which interactions between G protein-coupled receptors (GPCR) and intracellular proteins can be monitored in real-time and without the use of exogenous labels. The method is based on surface plasmon resonance (SPR) and uses synthetic peptides as mimics of intracellular GPCR domains. These peptides are covalently immobilized onto sensor chips and brought into contact with putative interacting proteins in the flow cells of the SPR instrument. The method allows flexible experimental designs, rapid testing of hypotheses and quantitative analysis of interactions. Relative to other established methods, it provides both an alternative and a complementary approach with several key advantages. The present protocol describes the method step-by-step, using as example an interaction between the serotonin 5-HT7 receptor and the calcium-binding protein S100B.
Keywords
G protein-coupled receptor
protein-protein interaction
surface plasmon resonance
S100B
5-HT7
References

1. Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nature reviews Drug discovery. 2006;5(12):993-6. doi: 10.1038/nrd2199. PubMed PMID: 17139284.

2. Hopkins AL, Groom CR. The druggable genome. Nature reviews Drug discovery. 2002;1(9):727-30. doi: 10.1038/nrd892. PubMed PMID: 12209152.

3. Katritch V, Cherezov V, Stevens RC. Diversity and modularity of G protein-coupled receptor structures. Trends in pharmacological sciences. 2012;33(1):17-27. doi: 10.1016/j.tips.2011.09.003. PubMed PMID: 22032986; PubMed Central PMCID: PMC3259144.

4. Lagerström MC, Schiöth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nature reviews Drug discovery. 2008;7(4):339-57. doi: 10.1038/nrd2518. PubMed PMID: 18382464.

5. Adamson RJ, Watts A. Kinetics of the early events of GPCR signalling. FEBS Lett. 2014;588(24):4701-7. doi: 10.1016/j.febslet.2014.10.043. PubMed PMID: 25447525; PubMed Central PMCID: PMCPMC4266533.

6. Northup J. Measuring rhodopsin-G-protein interactions by surface plasmon resonance. Methods in molecular biology. 2004;261:93-112. doi: 10.1385/1-59259-762-9:093. PubMed PMID: 15064451.

7. Slepak VZ. Application of surface plasmon resonance for analysis of protein-protein interactions in the G protein-mediated signal transduction pathway. Journal of molecular recognition : JMR. 2000;13(1):20-6. doi: 10.1002/(SICI)1099-1352(200001/02)13:1<20::AID-JMR485>3.0.CO;2-N. PubMed PMID: 10679893.

8. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chemical reviews. 2008;108(2):462-93. doi: 10.1021/cr068107d. PubMed PMID: 18229953.

9. Isozumi N, Iida Y, Nakatomi A, Nemoto N, Yazawa M, Ohki S. Conformation of the calmodulin-binding domain of metabotropic glutamate receptor subtype 7 and its interaction with calmodulin. Journal of biochemistry. 2011;149(4):463-74. doi: 10.1093/jb/mvr006. PubMed PMID: 21258069.

10. Moller TC, Wirth VF, Roberts NI, Bender J, Bach A, Jacky BP, et al. PDZ domain-mediated interactions of G protein-coupled receptors with postsynaptic density protein 95: quantitative characterization of interactions. PloS one. 2013;8(5):e63352. doi: 10.1371/journal.pone.0063352. PubMed PMID: 23691031; PubMed Central PMCID: PMC3653948.

11. Turner JH, Gelasco AK, Raymond JR. Calmodulin interacts with the third intracellular loop of the serotonin 5-hydroxytryptamine1A receptor at two distinct sites: putative role in receptor phosphorylation by protein kinase C. The Journal of biological chemistry. 2004;279(17):17027-37. doi: 10.1074/jbc.M313919200. PubMed PMID: 14752100.

12. Locatelli-Hoops S, Yeliseev AA, Gawrisch K, Gorshkova I. Surface plasmon resonance applied to G protein-coupled receptors. Biomed Spectrosc Imaging. 2013;2(3):155-81. doi: 10.3233/BSI-130045. PubMed PMID: 24466506; PubMed Central PMCID: PMCPMC3898597.

13. Navratilova I, Dioszegi M, Myszka DG. Analyzing ligand and small molecule binding activity of solubilized GPCRs using biosensor technology. Analytical biochemistry. 2006;355(1):132-9. doi: 10.1016/j.ab.2006.04.021. PubMed PMID: 16762304.

14. Stenlund P, Babcock GJ, Sodroski J, Myszka DG. Capture and reconstitution of G protein-coupled receptors on a biosensor surface. Analytical biochemistry. 2003;316(2):243-50. PubMed PMID: 12711346.

15. Stroth N, Svenningsson P. S100B interacts with the serotonin 5-HT receptor to regulate a depressive-like behavior. Eur Neuropsychopharmacol. 2015. doi: 10.1016/j.euroneuro.2015.10.003. PubMed PMID: 26499172.

16. Stothard P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques. 2000;28(6):1102, 4. PubMed PMID: 10868275.

17. Ivanenkov VV, Jamieson GA, Jr., Gruenstein E, Dimlich RV. Characterization of S-100b binding epitopes. Identification of a novel target, the actin capping protein, CapZ. The Journal of biological chemistry. 1995;270(24):14651-8. PubMed PMID: 7540176.

18. Fischer MJE. Amine Coupling Through EDC/NHS: A Practical Approach. Surface Plasmon Resonance: Methods and Protocols. 2010;627:55-73. doi: Doi 10.1007/978-1-60761-670-2_3. PubMed PMID: WOS:000276684500003.

19. Leclerc E. Measuring binding of S100 proteins to RAGE by surface plasmon resonance. Methods in molecular biology. 2013;963:201-13. doi: 10.1007/978-1-62703-230-8_13. PubMed PMID: 23296613.

20. Delphin C, Ronjat M, Deloulme JC, Garin G, Debussche L, Higashimoto Y, et al. Calcium-dependent interaction of S100B with the C-terminal domain of the tumor suppressor p53. The Journal of biological chemistry. 1999;274(15):10539-44. PubMed PMID: 10187847.

21. Duda T, Koch KW, Venkataraman V, Lange C, Beyermann M, Sharma RK. Ca(2+) sensor S100beta-modulated sites of membrane guanylate cyclase in the photoreceptor-bipolar synapse. The EMBO journal. 2002;21(11):2547-56. doi: 10.1093/emboj/21.11.2547. PubMed PMID: 12032068; PubMed Central PMCID: PMC125384.

22. Ostendorp T, Leclerc E, Galichet A, Koch M, Demling N, Weigle B, et al. Structural and functional insights into RAGE activation by multimeric S100B. The EMBO journal. 2007;26(16):3868-78. doi: 10.1038/sj.emboj.7601805. PubMed PMID: 17660747; PubMed Central PMCID: PMC1952220.

23. Dempsey BR, Shaw GS. Identification of calcium-independent and calcium-enhanced binding between S100B and the dopamine D2 receptor. Biochemistry. 2011;50(42):9056-65. doi: 10.1021/bi201054x. PubMed PMID: 21932834; PubMed Central PMCID: PMC3196243.

Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific