POL Scientific / JBM / Volume 11 / Issue 3 / DOI: 10.14440/jbm.2024.0013
Cite this article
8
Download
24
Citations
148
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Genetic insights into endurance athlete status: A meta-analysis of ACVR1B, AGT, FTO, IL-6, and NRF2 gene polymorphisms

Gökhan İpekoğlu1 Erdal Ari1 Alpay Aydoğdu2* Furkan Korkmaz2 Hülya Çelik2 Fatih Öztürk2 Şeyma Tuba Acar2
Show Less
1 Faculty of Sport Sciences, Ordu University, Ordu, Türkiye
2 Institute of Health Sciences, Ordu University, Ordu, Türkiye
JBM 2024 , 11(3), e99010021; https://doi.org/10.14440/jbm.2024.0013
Submitted: 11 June 2024 | Accepted: 14 August 2024 | Published: 6 September 2024
© 2024 by the Journal of Biological Methods published by POL Scientific. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The aim of this meta-analysis was to analyze allele and genotype pattern frequencies of five different gene polymorphisms associated with endurance athlete status. Endurance sports require prolonged physical performance, and it is well known that physiological and genetic characteristics play a prominent role in this performance. In recent years, research on the impact of genetic factors on endurance athlete status has been on the rise, suggesting that various gene polymorphisms may be associated with physical performance. Specifically, the gene polymorphisms, activin receptor type-1B (A9CVR1B) rs2854464, angiotensinogen (AGT) rs699, fat mass and obesity-associated (FTO) rs9939609, interleukin-6 (IL-6) rs1800795, and nuclear factor erythroid 2 (NRF2) rs12594956, are thought to be related to endurance athlete status. Each of these genes plays a part in different biological processes, such as muscle development, energy metabolism, inflammation, and antioxidant defense mechanisms. For example, the NRF2 gene is a critical player in the regulation of cellular stress responses and may contribute to adaptive responses that enhance performance in endurance athletes. This meta-analysis included a total of 20 articles published between 2009 and 2023. The specific gene polymorphisms explored in this study, i.e., ACVR1B rs2854464, AGT rs699, FTO rs9939609, IL-6 rs1800795, and NRF2 rs12594956, were selected due to their reported associations with physical performance and endurance. A comprehensive search was conducted in the Web of Science and PubMed databases using specific keywords, preliminarily identifying 329 articles. Upon analysis of the abstracts, and full texts, 20 articles were deemed eligible for inclusion in this meta-analysis. Articles lacking control and endurance athlete groups or clear allele/genotype data were excluded. The findings indicated no significant differences in allele and genotype frequencies for ACVR1B, AGT, FTO, and IL-6 gene polymorphisms between endurance athletes and control groups. However, the NRF2 rs12594956 gene polymorphism showed a significantly higher frequency of the major allele (A) and the AA genotype in endurance athletes than in controls. In conclusion, the NRF2 rs12594956 polymorphism may be a genetic variant of interest in determining the status of endurance athletes. These findings highlight the potential clinical implications for genetic screening and personalized training programs in sport genetics. More extensive studies with larger cohorts are needed to further confirm these associations.

Keywords
Activin receptor type-1B
Angiotensinogen
Fat mass and obesity-associated
Interleukin-6
Nuclear factor erythroid 2
Genetic polymorphism
Endurance athletes
Funding
None.
References
  1. Pickering C. Is there Utility to Genetic Information in Elite Sport? England: University of Central Lancashire; 2020. doi: 10.13140/RG.2.2.25902.54081

 

  1. Ipekoglu G, Bulbul A, Cakir HI. A meta-analysis on the association of ACE and PPARA gene variants and endurance athletic status. J Sports Med Phys Fitness. 2022;62(6):795-802. doi: 10.23736/S0022-4707.21.12417-X

 

  1. Stepto NK, Coffey VG, Carey AL, et al. Global gene expression in skeletal muscle from well-trained strength and endurance athletes. Med Sci Sports Exerc. 2009;41(3):546-565. doi: 10.1249/MSS.0b013e31818c6be9

 

  1. Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: Implications for athletic performance, injury and ageing. Eur J Appl Physiol. 2016;116(9):1595-1625. doi: 10.1007/s00421-016-3411-1

 

  1. Bulbul A, Ari E, Apaydin N, Ipekoglu G. The impact of genetic polymorphisms on anterior cruciate ligament injuries in athletes: A meta-analytical approach. Biology ( Basel). 2023;12(12):1526. doi: 10.3390/biology12121526

 

  1. Corvol P, Jeunemaitre X. Molecular genetics of human hypertension: Role of angiotensinogen. Endocr Rev. 1997;18(5):662-677. doi: 10.1210/edrv.18.5.0312

 

  1. Ipekoglu G, Cetin T, Apaydin N, Calcali T, Senel E. The role of AGT, AMPD1, HIF1α, IL-6 gene polymorphisms in the Athletes’ power status: A meta-analysis. J Hum Kinet. 2023;89:77-87. doi: 10.5114/jhk/169262

 

  1. Lockey SJ. The Genetic Profiles of Elite Athletes [Dissertation]. England: Manchester Metropolitan University; 2017.

 

  1. Karjalainen J, Kujala UM, Stolt A, et al. Angiotensinogen gene M235T polymorphism predicts left ventricular hypertrophy in endurance athletes. J Am Coll Cardiol. 1999;34(2):494-499. doi: 10.1016/s0735-1097(99)00199-0

 

  1. Bulgay C, Polat T, Yılmaz OO, Aslan BT, Ergun MA, Ulucan K. Determination of angiotensinogen (AGT) rs699 polymorphism distribution in soccer players. Kilis 7 December. Univ J Phys Educ Sports Sci. 2021;5(2):145-153.

 

  1. Frayling TM, Timpson NJ, Weedon MN, et.al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889-894. doi: 10.1126/science.1141634

 

  1. Zmijewski P, Leońska-Duniec A. Association between the FTO A/T Polymorphism and elite athlete status in Caucasian swimmers. Genes (Basel). 2021;12(5):715. doi: 10.3390/genes12050715

 

  1. Grunnet LG, Brøns C, Jacobsen S, et al. Increased recovery rates of phosphocreatine and inorganic phosphate after isometric contraction in oxidative muscle fibers and elevated hepatic insulin resistance in homozygous carriers of the A-allele of FTO rs9939609. J Clin Endocrinol Metab. 2009;94(2):596-602. doi: 10.1210/jc.2008-1592

 

  1. Guilherme JP, Egorova ES, Semenova EA, et al. The A-allele of the FTO gene rs9939609 polymorphism is associated with decreased proportion of slow oxidative muscle fibers and over-represented in heavier athletes. J Strength Cond Res. 2019;33(3):691-700. doi: 10.1519/JSC.0000000000003032

 

  1. Kollias HD, McDermott JC. Transforming growth factor-beta and myostatin signaling in skeletal muscle. J Appl Physiol (1985). 2008;104(3):579-587. doi: 10.1152/japplphysiol.01091.2007

 

  1. Windelinckx A, De Mars G, Huygens W, et al. Comprehensive fine mapping of chr12q12-14 and follow-up replication identify activin receptor 1B (ACVR1B) as a muscle strength gene. Eur J Hum Genet. 2011;19(2):208-215. doi: 10.1038/ejhg.2010.173

 

  1. Venckunas T, Degens H. Genetic polymorphisms of muscular fitness in young healthy men. PLoS One. 2022;17(9):e0275179. doi: 10.1371/journal.pone.0275179

 

  1. Vasconcelos ED, Fernanda H, Salla RF. Role of interleukin-6 and interleukin-15 in exercise. MOJ Immunol. 2018;6(1):17-19. doi: 10.15406/moji.2018.06.00185

 

  1. Ruiz JR, Buxens A, Artieda M, et al. The-174 G/C polymorphism of the IL6 gene is associated with elite power performance. J Sci Med Sport. 2010;13(5):549-553. doi: 10.1016/j.jsams.2009.09.005

 

  1. Eider J, Cieszczyk P, Leońska-Duniec A, et al. Association of the 174 G/C polymorphism of the IL6 gene in Polish power-orientated athletes. J Sports Med Phys Fitness. 2013;53(1):88-92.

 

  1. Ben-Zaken S, Meckel Y, Nemet D, Kaufman L, Kassem E, Eliakim A. Evaluation of swimmers by coaches in relation to IL-6 G/C rs56588968 polymorphism: An exploratory study. J Phys Educ Sport. 2022;22(1):115-120. doi: 10.7752/jpes.2022.01014

 

  1. Mallard AR, Spathis JG, Coombes JS. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and exercise. Free Radic Biol Med. 2020;160:471-479. doi: 10.1016/j.freeradbiomed.2020.08.024

 

  1. Crilly MJ, Tryon LD, Erlich AT, Hood DA. The role of Nrf2 in skeletal muscle contractile and mitochondrial function. J Appl Physiol (1985). 2016;121(3):730-740. doi: 10.1152/japplphysiol.00042.2016

 

  1. Armagan G, Sevgili E, Gürkan FT, Dagci T. Tidegluib provides neuroprotection in Parkinson’s disease model through Nrf2/are pathway. Free Radic Biol Med. 2016;1(96):S27. doi: 10.1016/j.freeradbiomed.2016.04.182

 

  1. Eynon N, Nasibulina ES, Banting LK, et al. The FTO A/T polymorphism and elite athletic performance: A study involving three groups of European athletes. PLoS One. 2013;8(4):e60570. doi: 10.1371/journal.pone.0060570P

 

  1. Eynon N, Alves AJ, Sagiv M, Yamin C, Sagiv M, Meckel Y. Interaction betweenSNPs in the NRF2 gene and elite endurance performance. Physiol Genomics. 2010;41(1):78-81. doi: 10.1152/physiolgenomics.00199.2009

 

  1. Voisin S, Guilherme JP, Yan X, et al. ACVR1B rs2854464 is associated with sprint/power athletic status in a large cohort of Europeans but not Brazilians. PLoS One. 2016;11(6):e0156316. doi: 10.1371/journal.pone.0156316

 

  1. Guilherme JP, Bertuzzi R, Lima-Silva AE, Pereira AD, Lancha Junior AH. Analysis of sports-relevant polymorphisms in a large Brazilian cohort of top-level athletes. Ann Hum Genet. 2018;82(5):254-264. doi: 10.1111/ahg.12248

 

  1. González-Estrada GD, Berrio GB, Gómez-Ríos D. Association between ACE, ACTN3, AGT, BDKRB2, and IL-6 gene polymorphisms and elite status in Colombian athletes. J Phys Educ Sport. 2023;23(4):1036-1043. doi: 10.7752/jpes.2023.04129

 

  1. Gomez-Gallego F, Santiago C, Gonzalez-Freire M, et al. The C allele of the AGT Met235Thr polymorphism is associated with power sports performance. Appl Physiol Nutr Metab. 2009;34(6):1108-1111. doi: 10.1139/H09-108

 

  1. Guilherme JP. Perfil Poligênico De Atletas Brasileiros: Distribuição de Polimorfismos Associados ao Desempenho Físico [Doctoral Dissertation]. Brazil: Universidade de São Paulo; 2017. doi: 10.11606/T.39.2017.tde-10042017-134032.

 

  1. Zarebska A, Sawczyn S, Kaczmarczyk M, et al. Association of rs699 (M235T) polymorphism in the AGT gene with power but not endurance athlete status. J Strength Cond Res. 2013;27(10):2898-2903. doi: 10.1519/JSC.0b013e31828155b5

 

  1. Parfenteva OI, Groth D, Scheffler C, Zaharova MF. Influence of the A/T polymorphism of the FTO gene and sport specializations on the body composition of young Russian athletes. Anthropol Anz. 2019;76(5):401-408. doi: 10.1127/anthranz/2019/0943

 

  1. Eynon N, Ruiz JR, Meckel Y, et al. Is the-174 C/G polymorphism of the IL6 gene associated with elite power performance? A replication study with two different Caucasian cohorts. Exp Physiol. 2011;96(2):156-162. doi: 10.1113/expphysiol.2010.055442

 

  1. Ulucan K, Yuksel I, Dogan CS, Kavas NC, Bilici MF, Kaynar O. Interleukin-6 rs1800795 polymorphism is not considered as a genetic biomarker in Turkish national skiing running athlete cohort. Fresenius Environ Bull. 2020; 29(29):6359-6362.

 

  1. Ben-Zaken S, Meckel Y, Nemet D, Kassem E, Eliakim A. Increased prevalence of the IL-6-174C genetic polymorphism in long distance swimmers. J Hum Kinet. 2017;58:121-130. doi: 10.1515/hukin-2017-0070

 

  1. Eynon N, Ruiz JR, Bishop DJ, et al. The rs12594956 polymorphism in the NRF-2 gene is associated with top-level Spanish athlete’s performance status. J Sci Med Sport. 2013;16(2):135-139. doi: 10.1016/j.jsams.2012.05.004

 

  1. Dzitkowska-Zabielska M, Bojarczuk A, Borczyk M, et al. Transmission distortion of MCT1 rs1049434 among polish elite athletes. Genes (Basel). 2022;13(5):870. doi: 10.3390/genes13050870

 

  1. Fredriksson R, Hägglund M, Olszewski PK, et al. The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology. 2008;149(5):2062-2071. doi: 10.1210/en.2007-1457

 

  1. Kim J, Cha YN, Surh YJ. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res. 2010;690(1-2):12-23. doi: 10.1016/j.mrfmmm.2009.09.007

 

  1. Ben-Zaken S, Meckel Y, Nemet D, Kassem E, Eliakim A. The combined frequencies of the IL-6 G-174C and IGFBP3 A-202C polymorphisms among swimmers and runners. Growth Horm IGF Res. 2020;51:17-21. doi: 10.1016/j.ghir.2020.01.002
Conflict of interest
The authors have stated that they have no conflicts of interest.
Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific