POL Scientific / JBM / Volume 11 / Issue 2 / DOI: 10.14440/jbm.2024.0003
Cite this article
71
Download
85
Citations
656
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
MINI-REVIEW

Exploring molecular targets in cancer: Unveiling the anticancer potential of Paeoniflorin through a comprehensive analysis of diverse signaling pathways and recent advances

Kounser Jan1 Neelofar Hassan1 Antonisamy James2 Ishraq Hussain1 Shahzada Mudasir Rashid1,2*
Show Less
1 Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
2 Departments of Medicinal and Biological Chemistry, The University of Toledo, Toledo, Ohio, 43614, United States of America
JBM 2024 , 11(2), e99010014; https://doi.org/10.14440/jbm.2024.0003
Submitted: 9 May 2024 | Revised: 14 June 2024 | Accepted: 20 June 2024 | Published: 11 July 2024
© 2024 by the Journal of Biological Methods published by POL Scientific. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Tumors have posed significant threats to human health for over 250 years, emerging as the foremost cause of death. While chemotherapeutic drugs are effective in treating tumors, their side effects can sometimes be challenging to manage during therapy. Nonetheless, there is growing interest in exploring natural compounds as alternatives, which potentially achieve therapeutic outcomes comparable to conventional chemotherapeutics with fewer adverse effects. Paeoniflorin (PF), a monoterpene glycoside derived from the root of Paeonia lactiflora, has garnered significant attention lately due to its promising anti-cancer properties. This review offers an updated outline of the molecular mechanisms underlying PF’s anti-tumor function, with a focus on its modulation of various signaling pathways. PF exerts its anti-tumor activity by regulating crucial cellular processes including apoptosis, angiogenesis, proliferation, and metastasis. We explored the multifaceted impact of PF while modulating through signaling pathways, encompassing nuclear factor kappa B, NOTCH, caspase cascade, transforming growth factor-β, NEDD4, P53/14-3-3, STAT 3, MAPK, MMP-9, and SKP2 signaling pathways, highlighting its versatility in targeting diverse malignancies. Furthermore, we discuss future research directions aimed at exploring innovative and targeted cancer therapies facilitated by PF.

Keywords
Paeoniflorin
Cancer
Apoptosis
Natural compound
Signaling pathway
Funding
None.
References
  1. Wang, XZ, Xia L, Zhang XY, et al. The multifaceted mechanisms of Paeoniflorin in the treatment of tumors: State-of-the-Art. Biomed Pharmacother. 2022;149:112800. doi: 10.1016/j.biopha.2022.112800

 

  1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2020;71(3):209-249. doi: 10.3322/caac.21660

 

  1. GlobalSurg Collaborative and National Institute for Health Research Global Health Research Unit on Global Surgery. Global variation in postoperative mortality and complications after cancer surgery: A multicentre, prospective cohort study in 82 countries. Lancet. 2021;397(10272):387-397. doi: 10.1016/S0140-6736(21)00001-5

 

  1. Roy A, Li SD. Modifying the tumor microenvironment using nanoparticle therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(6):891-908. doi: 10.1002/wnan.1406

 

  1. Bayat Mokhtari R, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022-38043. doi: 10.18632/oncotarget.16723

 

  1. El-Hussein A, Manoto SL, Ombinda-Lemboumba S, Alrowaili ZA, Mthunzi-Kufa P. A review of chemotherapy and photodynamic therapy for lung cancer treatment. Anticancer Agents Med Chem. 2021;21:149-161. doi: 10.2174/1871520620666200403144945

 

  1. Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology. 2010;115:155-162. doi: 10.1159/000265166

 

  1. Volkova M, Russell R 3rd. Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Curr Cardiol Rev. 2011;7(4):214-220. doi: 10.2174/157340311799960645

 

  1. Lin SR, Fu YS, Tsai MJ, Cheng H, Weng CF. Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy. Int J Mol Sci. 2017;18(7):1412. doi: 10.3390/ijms18071412

 

  1. Cragg GM, Pezzuto JM. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract. 2016;25(Suppl 2):41-59. doi: 10.1159/000443404

 

  1. Moudi M, Go R, Yien CYS, Nazre M. Vinca alkaloids. Int J Prev Med. 2013;4(11):1231-1235.

 

  1. Desai SJ, Prickril B, Rasooly A. Mechanisms of phytonutrient modulation of cyclooxygenase-2 (COX-2) and inflammation related to cancer. Nutr Cancer. 2018;70(3):350-375. doi: 10.1080/01635581.2018.1446091

 

  1. Reyes-Farias M, Carrasco-Pozo C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int J Mol Sci. 2019;20(13):3177. doi: 10.3390/ijms20133177

 

  1. Lazzeroni M, Guerrieri-Gonzaga A, Gandini S, et al. A presurgical study of lecithin formulation of green tea extract in women with early breast cancer. Cancer Prev Res (Phila). 2017;10(6):363-370. doi: 10.1158/1940-6207.CAPR-16-0298

 

  1. Wang C, Yuan J, Wu HX, et al. Paeoniflorin inhibits inflammatory responses in mice with allergic contact dermatitis by regulating the balance between inflammatory and anti-inflammatory cytokines. Inflamm Res. 2013;62(12):1035-1044. doi: 10.1007/s00011-013-0662-8

 

  1. Su J, Zhang P, Zhang JJ, Qi XM, Wu YG, Shen JJ. Effects of total glucosides of paeony on oxidative stress in the kidney from diabetic rats. Phytomedicine. 2010;17(3-4):254-260. doi: 10.1016/j.phymed.2009.07.005

 

  1. Xia XJ, Huang B. Research progress in molecular mechanism of paeoniflorin in liver cancer. Cent South Pharm. 2018;16:209-212.

 

  1. Deng LJ, Lei YH, Chiu TF, et al. The anticancer effects of paeoniflorin and its underlying mechanisms. Nat Prod Commun. 2019;14(9). doi: 10.1177/1934578X19876409

 

  1. Cheng J, Chen M, Wan HQ, et al. Paeoniflorin exerts antidepressant-like effects through enhancing neuronal FGF-2 by microglial inactivation. J Ethnopharmacol. 2021;274:114046. doi: 10.1016/j.jep.2021.114046

 

  1. Wang XT, Peng Z, An YY, et al. Paeoniflorin and hydroxysafflor yellow A in Xuebijing injection attenuate sepsis-induced cardiac dysfunction and inhibit proinflammatory cytokine production. Front Pharmacol. 2021;11:614024. doi: 10.3389/fphar.2020.614024

 

  1. Feng WK, Guo XP. The pharmacological research progress of paeoniflorin. J Shangdong TCM. 2019;38:105-108.

 

  1. Qi W, Duan S. Induction effect of paeoniflorin on the apoptosis of lung adenocarcinoma A549 cells. China Pharm. 2015;26(12):3103-3105.

 

  1. Wang Y, Wang Q, Li X, et al. Paeoniflorin sensitizes breast cancer cells to tamoxifen by downregulating microRNA-15b via the FOXO1/CCND1/β-catenin axis. Drug Des Devel Ther. 2021;14:245-257. doi: 10.2147/DDDT.S278002

 

  1. Fang S, Zhu W, Zhang Y, Shu Y, Liu P. Paeoniflorin modulates multidrug resistance of a human gastric cancer cell line via the inhibition of NF-κB activation. Mol Med Rep. 2012;5(2):351-356. doi: 10.3892/mmr.2011.652

 

  1. Timofeeva OA, Tarasova NI, Zhang X, et al. STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain. Proc Natl Acad Sci U S A. 2013;110(4):1267-1272. doi: 10.1073/pnas.1211805110

 

  1. Li Y, Gong L, Qi R, et al. Paeoniflorin suppresses pancreatic cancer cell growth by upregulating HTRA3 expression. Drug Des Devel Ther. 2017;11:2481-2491. doi: 10.2147/DDDT.S134518

 

  1. Zhang JW, Li LX, Wu WZ, et al. Anti-tumor effects of paeoniflorin on epithelial-to-mesenchymal transition in human colorectal cancer cells. Med Sci Monit. 2018;24:6405-6411. doi: 10.12659/MSM.912227

 

  1. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1(4):a000034. doi: 10.1101/cshperspect.a000034

 

  1. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23

 

  1. Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct Target Ther. 2020;5(1):209. doi: 10.1038/s41392-020-00312-6

 

  1. Shih VFS, Tsui R, Caldwell A, Hoffmann A. A single NFκB system for both canonical and non-canonical signaling. Cell Res. 2011;21(1):86-102. doi: 10.1038/cr.2010.161

 

  1. Sun SC. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17(9):545-558. doi: 10.1038/nri.2017.52

 

  1. Sun SC. Non-canonical NF-κB signaling pathway. Cell Res. 2011;21(1):71-85. doi: 10.1038/cr.2010.177

 

  1. Zhang J, Wang F, Wang H, et al. Paeoniflorin inhibits proliferation of endometrial cancer cells via activating MAPK and NF-κB signaling pathways. Exp Ther Med. 2017;14(6):5445-5451. doi: 10.3892/etm.2017.5250

 

  1. Xiang Y, Zhang Q, Wei S, Huang C, Li Z, Gao Y. Paeoniflorin: A monoterpene glycoside from plants of Paeoniaceae family with diverse anticancer activities. J Pharm Pharmacol. 2020;72(4):483-495. doi: 10.1111/jphp.13204

 

  1. Bai X, Yu C, Yang L, et al. Anti-psoriatic properties of paeoniflorin: Suppression of the NF-kappaB pathway and Keratin 17. Eur J Dermatol. 2020;30(3):243-250. doi: 10.1684/ejd.2020.3770

 

  1. Wu H, Li W, Wang T, Shu Y, Liu P. Paeoniflorin suppress NF-kappaB activation through modulation of I kappaB alpha and enhances 5-fluorouracil-induced apoptosis in human gastric carcinoma cells. Biomed Pharmacother. 2008;62(9):659-666. doi: 10.1016/j.biopha.2008.08.002

 

  1. Gao TQ, Li X, Dong SJ, et al. Effect of paeoniflorin on the proliferation, apoptosis and migration of human epithelial ovarian cancer HO8910 cells and its mechanism. J Pharm Res. 2019;38(4):198-204. doi: 10.13506/j.cnki.jpr.2019.04.003

 

  1. Bai CY, Wang HL. Paeoniflorin induces HepG2 cell apoptosis by regulating Caspase3 activation and nuclear factor kappa B signaling pathway. World Chin J Digestol. 2015;23(24):3582-3586.

 

  1. Wu JJ, Sun WY, Hu SS, Zhang S, Wei W. A standardized extract from Paeonia lactiflora and Astragalus membranaceus induces apoptosis and inhibits the proliferation, migration and invasion of human hepatoma cell lines. Int J Oncol. 2013;43(5):1643-1651. doi: 10.3892/ijo.2013.2085

 

  1. Gu P, Zhu L, Liu Y, Zhang L, Liu J, Shen H. Protective effects of paeoniflorin on TNBS-induced ulcerative colitis through inhibiting NF-kappaB pathway and apoptosis in mice. Int Immunopharmacol. 2017;50:152-160. doi: 10.1016/j.intimp.2017.06.022

 

  1. Cho EJ, Kim HY, Lee AY. Paeoniflorin ameliorates Aβ-stimulated neuroinflammation via regulation of NF-κB signaling pathway and Aβ degradation in C6 glial cells. Nutr Res Pract. 2020;14(6):593-605. doi: 10.4162/nrp.2020.14.6.593

 

  1. Jiang N, Xie F, Guo Q, Li MQ, Xiao J, Sui L. Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells through the Toll-like receptor 4/nuclear factor-κB pathway. Tumor Biol. 2017;39(6). doi: 10.1177/1010428317710586

 

  1. Chuang TH, Ulevitch RJ. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol. 2004;5(5):495-502. doi: 10.1038/ni1066

 

  1. Wang Z, Yu G, Liu Z, et al. Paeoniflorin inhibits glioblastoma growth in vivo and in vitro: A role for the Triad3A-dependent ubiquitin proteasome pathway in TLR4 degradation. Cancer Manag Res. 2018;10:887-897. doi: 10.2147/CMAR.S160292

 

  1. Kopan R. Notch signaling. Cold Spring Harb Perspect Biol. 2012;4(10):a011213. doi: 10.1101/cshperspect.a011213

 

  1. Sander GR, Krysinska H, Powell BC. Developmental signaling networks: The notch pathway. Physiol Gastrointest Tract. 2006;287:287-306. doi: 10.1016/B978-012088394-3/50013-1

 

  1. Canalis E. Notch signaling in osteoblasts. Sci Signal. 2008;1(17):pe17. doi: 10.1126/stke.117pe17

 

  1. Baron M. An overview of the Notch signalling pathway. Semin Cell Dev Biol. 2003;14(2):113-119. doi: 10.1016/s1084-9521(02)00179-9

 

  1. Kopan R, Ilagan MXG. The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell. 2009;137(2):216-233. doi: 10.1016/j.cell.2009.03.045

 

  1. Leong KG, Gao WQ. The Notch pathway in prostate development and cancer. Differentiation. 2008;76(6):699-716. doi: 10.1111/j.1432-0436.2008.00288.x

 

  1. Maraver A, Fernandez-Marcos PJ, Cash TP, et al. NOTCH pathway inactivation promotes bladder cancer progression. J Clin Invest. 2015;125(2):824-830. doi: 10.1172/JCI78185

 

  1. Zhang Q, Yuan Y, Cui J, Xiao T, Jiang D. Paeoniflorin inhibits proliferation and invasion of breast cancer cells through suppressing Notch-1 signaling pathway. Biomed Pharmacother. 2016;78:197-203. doi: 10.1016/j.biopha.2016.01.019

 

  1. Zhang J, Yu K, Han X, et al. Paeoniflorin influences breast cancer cell proliferation and invasion via inhibition of the Notc-1 signaling pathway. Mol Med Rep. 2018;17(1):1321-1325. doi: 10.3892/mmr.2017.8002

 

  1. Chang HY, Yang X. Proteases for cell suicide: Functions and regulation of caspases. Microbiol Mol Biol Rev. 2000;64(4):821-846. doi: 10.1128/mmbr.64.4.821-846.2000

 

  1. Cullen SP, Martin SJ. Caspase activation pathways: Some recent progress. Cell Death Differ. 2009;16(7):935-938. doi: 10.1038/cdd.2009.59

 

  1. Jin LB, Zhu J, Liang CZ, et al. Paeoniflorin induces G2/M cell cycle arrest and caspase-dependent apoptosis through the upregulation of Bcl-2 X-associated protein and downregulation of B-cell lymphoma 2 in human osteosarcoma cells. Mol Med Rep. 2018;17(4):5095-5101. doi: 10.3892/mmr.2018.8464

 

  1. Zhang L, Zhang S. Modulating Bcl-2 family proteins and caspase-3 in induction of apoptosis by paeoniflorin in human cervical cancer cells. Phytother Res. 2011;25(10):1551-1557. doi: 10.1002/ptr.3534

 

  1. Cong C, Kluwe L, Li S, et al. Paeoniflorin inhibits tributyltin chloride-induced apoptosis in hypothalamic neurons via inhibition of MKK4-JNK signaling pathway. J Ethnopharmacol. 2019;237:1-8. doi: 10.1016/j.jep.2019.03.030

 

  1. Xu F, Liu C, Zhou D, Zhang L. TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem. 2016;64(3):157-167. doi: 10.1369/0022155415627681

 

  1. Huang F, Chen YG. Regulation of TGF-β receptor activity. Cell Biosci. 2012;2:9. doi: 10.1186/2045-3701-2-9

 

  1. Wang Z, Liu Z, Yu G, et al. Paeoniflorin inhibits migration and invasion of human glioblastoma cells via suppression transforming growth factor β-induced epithelial-mesenchymal transition. Neurochem Res. 2018;43:760-774. doi: 10.1007/s11064-018-2478-y

 

  1. Ji Y, Dou YN, Zhao QW, et al. Paeoniflorin suppresses TGF-β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway. Acta Pharmacol Sin. 2016;37(6):794-804. doi: 10.1038/aps.2016.36

 

  1. Zhou J, Tan Y, Wang X, Zhu M. Paeoniflorin attenuates DHEA-induced polycystic ovary syndrome via inactivation of TGF-β1/Smads signaling pathway in vivo. Aging (Albany NY). 2021;13(5):7084-7095. doi: 10.18632/aging.202564

 

  1. Ingham RJ, Gish G, Pawson T. The Nedd4 family of E3 ubiquitin ligases: Functional diversity within a common modular architecture. Oncogene. 2004;23(11):1972-1984. doi: 10.1038/sj.onc.1207436

 

  1. Scheffner M, Kumar S. Mammalian HECT ubiquitin-protein ligases: Biological and pathophysiological aspects. Biochim Biophys Acta. 2014;1843(1):61-74. doi: 10.1016/j.bbamcr.2013.03.024

 

  1. Huang X, Chen J, Cao W, et al. The many substrates and functions of NEDD4-1. Cell Death Dis. 2019;10(12):904. doi: 10.1038/s41419-019-2142-8

 

  1. Ye X, Wang L, Shang B, Wang Z, Wei W. NEDD4: A promising target for cancer therapy. Curr Cancer Drug Targets. 2014;14(6):549-556. doi: 10.2174/1568009614666140725092430

 

  1. Chen Y, Zhang R, Zhao W, et al. Paeoniflorin exhibits antitumor effects in nasopharyngeal carcinoma cells through downregulation of NEDD4. Am J Transl Res. 2019;11(12):7579-7590.

 

  1. Nie XH, Qiu S, Xing Y, et al. Paeoniflorin regulates NEDD4L/STAT3 pathway to induce ferroptosis in human glioma cells. J Oncol. 2022;2022(1):6093216. doi: 10.1155/2022/6093216

 

  1. Machado-Silva A, Perrier S, Bourdon JC. p53 family members in cancer diagnosis and treatment. Semin Cancer Biol. 2010;20(1):57-62. doi: 10.1016/j.semcancer.2010.02.005

 

  1. Falcicchio M, Ward JA, Macip S, Doveston RG. Regulation of p53 by the 14-3-3 protein interaction network: New opportunities for drug discovery in cancer. Cell Death Discov. 2020;6(1):126. doi: 10.1038/s41420-020-00362-3

 

  1. Doveston RG, Kuusk A, Andrei SA, et al. Small-molecule stabilization of the p53-14-3-3 protein-protein interaction. FEBS Lett. 2017;591(16):2449-2457. doi: 10.1002/1873-3468.12723

 

  1. Schumacher B, Mondry J, Thiel P, Weyand M, Ottmann C. Structure of the p53 C-terminus bound to 14-3-3: Implications for stabilization of the p53 tetramer. FEBS Lett. 2010;584(8):1443-1448. doi: 10.1016/j.febslet.2010.02.065

 

  1. Wang H, Zhou H, Wang CX, et al. Paeoniflorin inhibits growth of human colorectal carcinoma HT 29 cells in vitro and in vivo. Food Chem Toxicol. 2012;50(5):1560-1567. doi: 10.1016/j.fct.2012.01.035

 

  1. Kamran MZ, Patil P, Gude RP. Role of STAT3 in cancer metastasis and translational advances. Biomed Res Int. 2013;2013:421821. doi: 10.1155/2013/421821

 

  1. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat Rev Cancer. 2009;9(11):798-809. doi: 10.1038/nrc2734

 

  1. Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nat Rev Cancer. 2014;14(11):736-746. doi: 10.1038/nrc3818

 

  1. Nie XH, Ou-Yang J, Xing Y, et al. Paeoniflorin inhibits human glioma cells via STAT3 degradation by the ubiquitin-proteasome pathway. Drug Des Devel Ther. 2015;9:5611-5622. doi: 10.2147/DDDT.S93912

 

  1. Zheng YB, Luo HP, Shi Q, et al. miR-132 inhibits colorectal cancer invasion and metastasis via directly targeting ZEB2. World J Gastroenterol. 2014;20(21):6515-6522. doi: 10.3748/wjg.v20.i21.6515

 

  1. Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078-2092. doi: 10.1056/NEJMoa1801005

 

  1. Morrison DK. MAP kinase pathways. Cold Spring Harb Perspect Biol. 2012;4(11):a011254. doi: 10.1101/cshperspect.a011254

 

  1. Guo RB, Wang GF, Zhao AP, Gu J, Sun XL, Hu G. Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-κB-mediated inflammatory responses. PLoS One. 2012;7(11):e49701. doi: 10.1371/journal.pone.0049701

 

  1. Li W, Zhi W, Liu F, Zhao J, Yao Q, Niu X. Paeoniflorin inhibits VSMCs proliferation and migration by arresting cell cycle and activating HO-1 through MAPKs and NF-κB pathway. Int Immunopharmacol. 2018;54:103-111. doi: 10.1016/j.intimp.2017.10.017

 

  1. Liu X, Chen K, Zhuang Y, et al. Paeoniflorin improves pressure overload-induced cardiac remodeling by modulating the MAPK signaling pathway in spontaneously hypertensive rats. Biomed Pharmacother. 2019;111:695-704. doi: 10.1016/j.biopha.2018.12.090

 

  1. Gordon GM, Ledee DR, Feuer WJ, Fini ME. Cytokines and signaling pathways regulating matrix metalloproteinase-9 (MMP-9) expression in corneal epithelial cells. J Cell Physiol. 2009;221(2):402-411. doi: 10.1002/jcp.21869

 

 

  1. Zhang FR, Huang W, Chen SM, et al. Genomewide association study of leprosy. N Engl J Med. 2009;361(27):2609-2618. doi: 10.1056/NEJMoa0903753

 

  1. Wu T, Gu X, Cui H. Emerging roles of SKP2 in cancer drug resistance. Cells. 2021;10(5):1147. doi: 10.3390/cells10051147

 

  1. Liu H, Zang L, Zhao J, Wang Z, Li L. Paeoniflorin inhibits cell viability and invasion of liver cancer cells via inhibition of Skp2. Oncol Lett. 2020;19(4):3165-3172. doi: 10.3892/ol.2020.11424

 

  1. Niu C, Wang X, Zhao M, et al. Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. J Am Heart Assoc. 2016;5(10):e004099. doi: 10.1161/JAHA.116.004099

 

  1. Hung JY, Yang CJ, Tsai YM, Huang HW, Huang MS. Antiproliferative activity of paeoniflorin is through cell cycle arrest and the Fas/Fas ligand-mediated apoptotic pathway in human non-small cell lung cancer A549 cells. Clin Exp Pharmacol Physiol. 2008;35(2):147-147. doi: 10.1111/j.1440-1681.2007.04795.x

 

  1. Niu K, Liu Y, Zhou Z, Wu X, Wang H, Yan J. Antitumor effects of paeoniflorin on hippo signaling pathway in gastric cancer cells. J Oncol. 2021;2021(1):4724938. doi: 10.1155/2021/4724938

 

Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific