POL Scientific / JBM / Volume 11 / Issue 2 / DOI: 10.14440/jbm.2024.0009
Cite this article
Journal Browser
Volume | Year
News and Announcements
View All

Epigenomic, cistromic, and transcriptomic profiling of primary kidney tubular cells

Zhiheng Liu1 Lirong Zhang2* Yupeng Chen1,2*
Show Less
1 Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300211, China
2 Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
JBM 2024 , 11(2), e99010015; https://doi.org/10.14440/jbm.2024.0009
Submitted: 31 May 2024 | Revised: 21 June 2024 | Accepted: 25 June 2024 | Published: 10 July 2024
© 2024 by the Journal of Biological Methods published by POL Scientific. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )

Spatiotemporal regulation of gene expression is essential for maintaining cellular homeostasis throughout kidney development and disease progression. Transcription factors (TFs) and epigenetic modifications play pivotal roles in controlling gene expression. Profiling chromatin modifications across the genome, along with the distribution and target regulation by TFs in specific kidney cell types, is crucial for understanding the dynamic changes in gene expression. Here, we presented a comprehensive workflow for epigenomic, cistromic, and transcriptomic analyses of primary kidney tubular cells. Specifically, our methodologies included the isolation of primary kidney tubular epithelial cells, RNA extraction, assay for transposase-accessible chromatin using sequencing, ultra-low-input micrococcal nuclease-based native chromatin immunoprecipitation, cleavage under targets and release using nuclease, and subsequent bioinformatic analysis. This protocol provides a methodological framework for investigating the roles of TFs and epigenetic modifications in kidney development and diseases.

Kidney disease
This study was supported by Tianjin Municipal Education Commission (Grant No.: 2022ZD054).
  1. Lambert SA, Jolma A, Campitelli LF, et al. The human transcription factors. Cell. 2018;172(4):650-665. doi: 10.1016/j.cell.2018.01.029


  1. Zhu J, Cao X, Deng X. Epigenetic and transcription factors synergistically promote the high temperature response in plants. Trends Biochem Sci. 2023;48(9):788-800. doi: 10.1016/j.tibs.2023.06.001


  1. Espinosa-Martínez M, Alcázar-Fabra M, Landeira D. The molecular basis of cell memory in mammals: The epigenetic cycle. Sci Adv. 2024;10(9):eadl3188. doi: 10.1126/sciadv.adl3188


  1. Rambout X, Maquat LE. Nuclear mRNA decay: Regulatory networks that control gene expression. Nat Rev Genet. 2024. doi: 10.1038/s41576-024-00712-2


  1. Ding H, Zhang L, Yang Q, Zhang X, Li X. Epigenetics in kidney diseases. Adv Clin Chem. 2021;104:233-297. doi: 10.1016/bs.acc.2020.09.005


  1. Liu F, Chen J, Li Z, Meng X. Recent advances in epigenetics of age-related kidney diseases. Genes (Basel). 2022;13(5):796. doi: 10.3390/genes13050796


  1. Liu Z, Liu Y, Dang L, et al. Integrative cistromic and transcriptomic analyses identify CREB target genes in cystic renal epithelial cells. J Am Soc Nephrol. 2021;32(10):2529-2541. doi: 10.1681/ASN.2021010101


  1. Orsi GA, Kasinathan S, Zentner GE, Henikoff S, Ahmad K. Mapping regulatory factors by immunoprecipitation from native chromatin. Curr Protoc Mol Biol. 2015;110: 21.31.1- 21.31.25. doi: 10.1002/0471142727.mb2131s110


  1. Liu Y, Su Z, Tavana O, Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell. 2024;42:946-967. doi: 10.1016/j.ccell.2024.04.009


  1. Ahmad Z, Kahloan W, Rosen ED. Transcriptional control of metabolism by interferon regulatory factors. Nat Rev Endocrinol. 2024. doi: 10.1038/s41574-024-00990-0


  1. Brind’Amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nat Commun. 2015;6:6033. doi: 10.1038/ncomms7033


  1. Park J, Shrestha R, Qiu C, et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science. 2018;360(6390):758-763. doi: 10.1126/science.aar2131


  1. Skene PJ, Henikoff JG, Henikoff S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat Protoc. 2018;13(5):1006-1019. doi: 10.1038/nprot.2018.015


  1. Meers MP, Bryson TD, Henikoff JG, Henikoff S. Improved CUT&RUN chromatin profiling tools. Elife. 2019;8:e46314. doi: 10.7554/eLife.46314


  1. Hainer SJ, Bošković A, McCannell KN, Rando OJ, Fazzio TG. Profiling of pluripotency factors in single cells and early embryos. Cell. 2019;177(5):1319-1329.e11. doi: 10.1016/j.cell.2019.03.014


  1. Grandi FC, Modi H, Kampman L, Corces MR. Chromatin accessibility profiling by ATAC-seq. Nat Protoc. 2022;17(6):1518-1552. doi: 10.1038/s41596-022-00692-9


  1. Janssens DH, Greene JE, Wu SJ, et al. Scalable single-cell profiling of chromatin modifications with sciCUT&Tag. Nat Protoc. 2024;19(1):83-112. doi: 10.1038/s41596-023-00905-9


  1. Nguyen H, Nguyen H, Tran D, Draghici S, Nguyen T. Fourteen years of cellular deconvolution: Methodology, applications, technical evaluation and outstanding challenges. Nucleic Acids Res. 2024;52(9):4761-4783. doi: 10.1093/nar/gkae267


  1. Hartmann S, Botha SM, Gray CM, et al. Can single-cell and spatial omics unravel the pathophysiology of pre-eclampsia? J Reprod Immunol. 2023;159:104136. doi: 10.1016/j.jri.2023.104136
Conflict of interest
The authors declare no conflict of interest.
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TAB, Published by POL Scientific