POL Scientific / JBM / Volume 10 / Issue 1 / DOI: 10.14440/jbm.2023.408
Cite this article
1
Download
26
Citations
255
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

Utilizing a human TLR selective ligand in a humanized immune system mouse model to investigate human TLR4 signaling

Rachel Twomey1 Sean Graham1 Joseph S. Spina1 Xiaoming Wu1 Philip E. Dubé2 Courtney Ferrebee2 William Housley1
Show Less
1 AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605
2 Taconic Biosciences, Inc., 5 University Place, Rensselaer, NY 12144
JBM 2023 , 10(1), 1;
Published: 20 November 2023
© 2023 by the author. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Mouse models with humanized immune systems are becoming increasingly prevalent in pharmaceutical research as a platform for preclinical testing with potential for greater translatability to clinical applications. However,the presence of both mouse and human cells that respond to TLR ligands poses a challenge for investigating therapeutic modalities targeting TLR signaling. AZ617 is a human TLR4 agonist,which has been shown in vitro to preferentially induce human cytokines via the TLR4 signaling pathway. We sought to examine the ability of AZ617 to preferentially induce human cytokines in CD34+ stem cell-engrafted NOG-EXL mice (huNOG-EXL), to determine its suitability as an in vivo human functional readout. AZ617 elicited a strong human TNFα and IL-6 response in vivo that demonstrated a 10- and 5-fold preference, respectively, over the mouse TNFα and IL-6. To assess efficacy of inhibiting a key protein in the TLR4 signaling pathway, PF-06650833, a small molecule inhibitor of IRAK4, was used as a tool molecule. PF-0660833 was found to effectively inhibit AZ617-induced human TNFα release in vitro. Likewise, PF-06650833 reduced AZ617-induced human TNFα in the huNOG-EXL mouse model, with a weaker effect on human IL-6. A longitudinal study tracking functionality of monocytes revealed that the ability of monocytes to respond to ex vivo stimuli was increased by 21 weeks after engraftment. Taken together, our data suggests that human selective TLR ligands could preferentially drive cytokine production from human cells in huNOG-EXL mice. This model will allow for investigation of pharmacological inhibition of human TLR signaling pathways in an in vivo model system.

Keywords
AZ617
humanized mouse
huNOG-EXL
human hematopoietic stem cell
toll-like receptor
human cytokine induction
steroid
IRAK4
References

1. Allen TM, Brehm MA, Bridges S, Ferguson S, Kumar P, Mirochnitchenko O, et al. Humanized immune system mouse models: progress, challenges and opportunities. Nature Immunology. 2019;20(7):770-4. https://doi.org/10.1038/s41590-019-0416-z
2. Perkins DJ, Vogel SN. Inflammation: Species-specific TLR signalling -- insight into human disease. Nat Rev Rheumatol. 2016;12(4):198-200. Epub 2016/03/24. https://doi.org/10.1038/nrrheum.2016.36 PMID: 27006311 PMCID: PMC4955569
3. Scheer N, Wilson ID. A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity. Drug Discov Today. 2016;21(2):250-63. https://doi.org/10.1016/j.drudis.2015.09.002
4. Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 2014;5:316. Epub 2014/07/30. https://doi.org/10.3389/fimmu.2014.00316 PMID: 25071777 PMCID: PMC4090903
5. Zuberi A, Lutz C. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power? ILAR J. 2016;57(2):178-85. Epub 2017/01/06. https://doi.org10.1093/ilar/ilw021 PMID: 28053071 PMCID: PMC5886322
6. Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172(5):2731-8. Epub 2004/02/24. https://doi.org/10.4049/jimmunol.172.5.2731 PMID: 14978070
7. Hasgur S, Aryee KE, Shultz LD, Greiner DL, Brehm MA. Generation of Immunodeficient Mice Bearing Human Immune Systems by the Engraftment of Hematopoietic Stem Cells. Methods Mol Biol. 2016;1438:67-78. Epub 2016/05/07. https://doi.org/10.1007/978-1-4939-3661-8_4 PMID: 27150084 PMCID: PMC5268072
8. Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct and Target Ther. 2023;8(1):160. https://doi.org/10.1038/s41392-023-01419-2
9. Yan C, Nebhan CA, Saleh N, Shattuck-Brandt R, Chen S-C, Ayers GD, et al. Generation of Orthotopic Patient-Derived Xenografts in Humanized Mice for Evaluation of Emerging Targeted Therapies and Immunotherapy Combinations for Melanoma. Cancers. 2023;15(14):3695. https://doi.org/10.3390/cancers15143695
10. Chen L, Morris DL, Vyse TJ. Genetic advances in systemic lupus erythematosus: an update. Curr Opin Rheumatol. 2017;29(5):423-33. Epub 2017/05/17. https://doi.org/10.1097/BOR.0000000000000411 PMID: 28509669
11. Liu WN, Fong SY, Tan WWS, Tan SY, Liu M, Cheng JY, et al. Establishment and Characterization of Humanized Mouse NPC-PDX Model for Testing Immunotherapy. Cancers (Basel). 2020;12(4). Epub 2020/04/26. https://doi.org/10.3390/cancers12041025 PMID: 32331230 PMCID: PMC7225949
12. Zhao Y, Shuen TWH, Toh TB, Chan XY, Liu M, Tan SY, et al. Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy. Gut. 2018;67(10):1845-54. Epub 2018/04/01. https://doi.org/10.1136/gutjnl-2017-315201 PMID: 29602780 PMCID: PMC6145285
13. Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H, Baghaei K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. Journal of Translational Medicine. 2022;20(1):206. https://doi.org/10.1186/s12967-022-03405-8
14. huNOG-EXL SA (Standard Access) Humanized Immune System Mouse Model: Taconic Biosciences, Inc.; 2023 [2023 January 25]. Available from: https://www.taconic.com/mouse-model/hunog-exl-sa-standard-access.
15. Radaelli E, Hermans E, Omodho L, Francis A, Vander Borght S, Marine JC, et al. Spontaneous Post-Transplant Disorders in NOD.Cg- Prkdcscid Il2rgtm1Sug/JicTac (NOG) Mice Engrafted with Patient-Derived Metastatic Melanomas. PLoS One. 2015;10(5):e0124974. Epub 2015/05/23. https://doi.org/10.1371/journal.pone.0124974 PMID: 25996609 PMCID: PMC4440639
16. Gaudino SJ, Kumar P. Cross-Talk Between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front Immunol. 2019;10:360. Epub 2019/03/22. https://doi.org/10.3389/fimmu.2019.00360 PMID: 30894857 PMCID: PMC6414782
17. Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol. 2008;9(4):361-8. Epub 2008/02/26. https://doi.org/10.1038/ni1569 PMID: 18297073 PMCID: PMC4112825
18. Akashi S, Nagai Y, Ogata H, Oikawa M, Fukase K, Kusumoto S, et al. Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int Immunol. 2001;13(12):1595-9. Epub 2001/11/22. https://doi.org/10.1093/intimm/13.12.1595 PMID: 11717200
19. Kawasaki K, Akashi S, Shimazu R, Yoshida T, Miyake K, Nishijima M. Involvement of TLR4/MD-2 complex in species-specific lipopolysaccharide-mimetic signal transduction by Taxol. J Endotoxin Res. 2001;7(3):232-6. Epub 2001/10/03. PMID: 11581576
20. Oblak A, Jerala R. The molecular mechanism of species-specific recognition of lipopolysaccharides by the MD-2/TLR4 receptor complex. Mol Immunol. 2015;63(2):134-42. Epub 2014/07/20. https://doi.org/10.1016/j.molimm.2014.06.034 PMID: 25037631
21. Marshall JD, Heeke DS, Rao E, Maynard SK, Hornigold D, McCrae C, et al. A Novel Class of Small Molecule Agonists with Preference for Human over Mouse TLR4 Activation. PLoS One. 2016;11(10):e0164632. Epub 2016/10/14. https://doi.org/10.1371/journal.pone.0164632 PMID: 27736941 PMCID: PMC5063506
22. AstraZeneca. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
Ripoll E, de Ramon L, Draibe Bordignon J, Merino A, Bolanos N, Goma M, et al. JAK3-STAT pathway blocking benefits in experimental lupus nephritis. Arthritis Res Ther. 2016;18(1):134. Epub 2016/06/10. https://doi.org/10.1186/s13075-016-1034-x PMID: 27278657 PMCID: PMC4898357
23. Winkler AS, W; De, S; Jiao, A; Sharif, MN; Symanowicz, PT; Athale, S; Shin, JH; Wang, J; Jacobson, BA; Ramsey, SJ; Dower, K; Andreyeva, T; Liu, H; Hegen, M; Homer, BL; Brodfuehrer, J; Tilley, M; Gilbert, SA; Danto, SI; Beebe, JJ; Barnes, BJ; Pascual, V; Lin, L; Kilty, I; Fleming, M; Rao, VR. The Interleukin-1 Receptor-Associated Kinase 4 Inhibitor PF-06650833 Blocks Inflammation in Preclinical Models of Rheumatic Disease and in Humans Enrolled in a Randomized Clinical Trial. Arthritis Rheumatol. 2021;73(12):2206-18.

Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TAB, Published by POL Scientific