POL Scientific / JBM / Volume 10 / Issue 1 / DOI: 10.14440/jbm.2023.394
Cite this article
33
Citations
86
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

An experimental workflow for enrichment of low abundant proteins from human serum for the discovery of serum biomarkers

Mehmet Sarihan1 Merve Gulsen1 Bal Albayrak1 Murat Kasap1 Gurler Akpinar1 Elifcan Kocyigit1
Show Less
1 Kocaeli University Medical School, Department of Medical Biology/Proteomics Laboratory, 41001, Umuttepe, Kocaeli, Turkey
JBM 2023 , 10(1), 1;
Published: 7 February 2023
© 2023 by the author. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Serum contains proteins that possess important information about diseases and their progression. Unfortunately, these proteins, which carry the information in the serum are in low abundance and are masked by other serum proteins that are in high abundance. Such masking prevents their identification and quantification. Therefore, removal of high abundance proteins is required to enrich, identify, and quantify the low abundance proteins. Immunodepletion methods are often used for this purpose, but there are limitations in their use because of off-target effects and high costs. Here we presented a robust, reproducible and cost-effective experimental workflow to remove immunoglobulins and albumin from serum with high efficiency. The workflow did not suffer from such limitations and enabled identification of 681 low abundance proteins that were otherwise undetectable in the serum. The identified low abundance proteins belonged to 21 different protein classes, namely the immunity-related proteins, modulators of protein-binding activity, and protein-modifying enzymes. They also played roles in various metabolic events, such as integrin signalling, inflammation-mediated signalling, and cadherin signalling. The presented workflow can be adapted to remove abundant proteins from other types of biological material and to provide considerable enrichment for low-abundance proteins.

Keywords
Albumin reduction
IgG removal
Biomarker discovery
Serum proteomics
References

1. Lamb JR, Jennings LL, Gudmundsdottir V, Gudnason V, Emilsson V. It’s in Our Blood: A Glimpse of Personalized Medicine. Trends Mol Med. 2021 Jan;27(1):20–30. https://doi.org/10.1016/j.molmed.2020.09.003 PMID:32988739
2. Ignjatovic V, Geyer PE, Palaniappan KK, Chaaban JE, Omenn GS, Baker MS, et al. Mass Spectrometry-Based Plasma Proteomics: Considerations from Sample Collection to Achieving Translational Data. J Proteome Res. 2019 Dec;18(12):4085–97. https://doi.org/10.1021/acs.jproteome.9b00503 PMID:31573204
3. Dey KK, Wang H, Niu M, Bai B, Wang X, Li Y, et al. Deep undepleted human serum proteome profiling toward biomarker discovery for Alzheimer’s disease. Clin Proteomics. 2019 Apr;16(1):16. https://doi.org/10.1186/s12014-019-9237-1 PMID:31019427
4. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, et al. Genomic atlas of the human plasma proteome. Nature. 2018 Jun;558(7708):73–9. https://doi.org/10.1038/s41586-018-0175-2 PMID:29875488
5. Jaros JA, Guest PC, Bahn S, Martins-de-Souza D. Affinity depletion of plasma and serum for mass spectrometry-based proteome analysis. Methods Mol Biol. 2013;1002:1–11. https://doi.org/10.1007/978-1-62703-360-2_1 PMID:23625390
6. Polaskova V, Kapur A, Khan A, Molloy MP, Baker MS. High-abundance protein depletion: comparison of methods for human plasma biomarker discovery. Electrophoresis. 2010 Jan;31(3):471–82. https://doi.org/10.1002/elps.200900286 PMID:20119956
7. Zolotarjova N, Martosella J, Nicol G, Bailey J, Boyes BE, Barrett WC. Differences among techniques for high-abundant protein depletion. Proteomics. 2005 Aug;5(13):3304–13. https://doi.org/10.1002/pmic.200402021 PMID:16052628
8. Candiano G, Dimuccio V, Bruschi M, Santucci L, Gusmano R, Boschetti E, et al. Combinatorial peptide ligand libraries for urine proteome analysis: investigation of different elution systems. Electrophoresis. 2009 Jul;30(14):2405–11. https://doi.org/10.1002/elps.200800762 PMID:19593750
9. Boschetti E, Giorgio Righetti P. Hexapeptide combinatorial ligand libraries: the march for the detection of the low-abundance proteome continues. Biotechniques. 2008 Apr;44(5):663–5. https://doi.org/10.2144/000112762 PMID:18474042
10. Beseme O, Fertin M, Drobecq H, Amouyel P, Pinet F. Combinatorial peptide ligand library plasma treatment: advantages for accessing low-abundance proteins. Electrophoresis. 2010 Aug;31(16):2697–704. https://doi.org/10.1002/elps.201000188 PMID:20665525
11. Boschetti E, Righetti PG. The ProteoMiner in the proteomic arena: a non-depleting tool for discovering low-abundance species. J Proteomics. 2008 Aug;71(3):255–64. https://doi.org/10.1016/j.jprot.2008.05.002 PMID:18603494
12. Righetti PG, Boschetti E. The ProteoMiner and the FortyNiners: searching for gold nuggets in the proteomic arena. Mass Spectrom Rev. 2008;27(6):596–608. https://doi.org/10.1002/mas.20178 PMID:18481254
13. Lee HJ, Lee EY, Kwon MS, Paik YK. Biomarker discovery from the plasma proteome using multidimensional fractionation proteomics. Curr Opin Chem Biol. 2006 Feb;10(1):42–9. https://doi.org/10.1016/j.cbpa.2006.01.007 PMID:16418010
14. Tu C, Rudnick PA, Martinez MY, Cheek KL, Stein SE, Slebos RJ, et al. Depletion of abundant plasma proteins and limitations of plasma proteomics. J Proteome Res. 2010 Oct;9(10):4982–91. https://doi.org/10.1021/pr100646w PMID:20677825
15. Licia C. Silva-Costa, Sheila Garcia-Rosa, Bardley J. Smith, Paulo A. Baldasso, Johann Steiner, Daniel Martins-de-Souza. Blood plasma high abundant protein depletion unintentionally carries over 100 proteins. SSC Plus. 2019 Dec;2(12):449-456. https://doi: 10.1002/sscp.201900057.
16. Gundry RL, Fu Q, Jelinek CA, Van Eyk JE, Cotter RJ. Investigation of an albumin-enriched fraction of human serum and its albuminome. Proteomics Clin Appl. 2007 Jan;1(1):73–88. https://doi.org/10.1002/prca.200600276 PMID:20204147
17. Liu Z, Li S, Wang H, Tang M, Zhou M, Yu J, et al. Proteomic and network analysis of human serum albuminome by integrated use of quick crosslinking and two-step precipitation. Sci Rep. 2017 Aug;7(1):9856. https://doi.org/10.1038/s41598-017-09563-w PMID:28851998
18. Gianazza E, Miller I, Palazzolo L, Parravicini C, Eberini I. With or without you - Proteomics with or without major plasma/serum proteins. J Proteomics. 2016 May;140:62–80. https://doi.org/10.1016/j.jprot.2016.04.002 PMID:27072114
19. Qian J, El Khoury G, Issa H, Al-Qaoud K, Shihab P, Lowe CR. A synthetic Protein G adsorbent based on the multi-component Ugi reaction for the purification of mammalian immunoglobulins. J Chromatogr B Analyt Technol Biomed Life Sci. 2012 Apr 21;898:15-23. https://doi: 10.1016/j.jchromb.2012.03.043 PMID: 22575289.
20. Walker JM. Gradient SDS Polyacrylamide Gel Electrophoresis of Proteins. Methods in Mol Biol. 1994;32:35-8. https://doi.org/10.1385/0-89603-268-X:35 PMID: 7951735
21. Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics. 2006 Dec;6(23):6326–53. https://doi.org/10.1002/pmic.200600284 PMID:17083142
22. Veenstra TD. Where are all the biomarkers? Expert Rev Proteomics. 2011 Dec;8(6):681-3. https://doi: 10.1586/epr.11.60 PMID: 22087652
23. Anderson NL, Anderson NG, Pearson TW, Borchers CH, Paulovich AG, Patterson SD, et al. A human proteome detection and quantitation project. Mol Cell Proteomics. 2009 May;8(5):883–6. https://doi.org/10.1074/mcp.R800015-MCP200 PMID:19131327
24. Rengarajan K, de Smet MD, Wiggert B. Removal of albumin from multiple human serum samples. Biotechniques. 1996 Jan;20(1):30-2. http://doi: 10.2144/96201bm05 PMID: 8770400
25. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002 Nov;1(11):845–67. https://doi.org/10.1074/mcp.R200007-MCP200 PMID:12488461
26. Brand J, Haslberger T, Zolg W, Pestlin G, Palme S. Depletion efficiency and recovery of trace markers from a multiparameter immunodepletion column. Proteomics. 2006 Jun;6(11):3236–42. https://doi.org/10.1002/pmic.200500864 PMID:16645986
27. Liu B, Qiu FH, Voss C, Xu Y, Zhao MZ, Wu YX, et al. Evaluation of three high abundance protein depletion kits for umbilical cord serum proteomics. Proteome Sci. 2011 May;9(1):24. https://doi.org/10.1186/1477-5956-9-24 PMID:21554704
28. Lee PY, Osman J, Low TY, Jamal R. Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery. Bioanalysis. 2019 Oct;11(19):1799–812. https://doi.org/10.4155/bio-2019-0145 PMID:31617391
29. Shen Y LL, Liao J. Assay: Proteomics Technology for Plasma and Serum. GEN. 2006 May;26(10). Accessed September 18, 2014. https://www.genengnews.com/magazine/50/assay-proteomics-technology-for-plasma-serum/
30. Gekka M, Abumiya T, Komatsu T, Funaki R, Kurisu K, Shimbo D, et al. Novel Hemoglobin-Based Oxygen Carrier Bound With Albumin Shows Neuroprotection With Possible Antioxidant Effects. Stroke. 2018 Aug;49(8):1960-1968. https://doi: 10.1161/STROKEAHA.118.021467 PMID: 29991658.

Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TAB, Published by POL Scientific