POL Scientific / Bladder / Volume 11 / Issue 3 / DOI: 10.14440/bladder.2024.0029
Cite this article
5
Download
10
Citations
59
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Urethral pharmacological mechanisms incontinence and bladder emptying: An updated review

Karl-Erik Andersson1,2* Bengt Uvelius3,4
Show Less
1 Department of Regenerative Medicine, Faculty of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, 27101 United States
2 Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, 22184 Sweden
3 Department of Urology, Skåne University Hospital, Malmö, 21421 Sweden
4 Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, 22184 Sweden
Bladder 2024 , 11(3), e21200015; https://doi.org/10.14440/bladder.2024.0029
Submitted: 6 August 2024 | Revised: 19 August 2024 | Accepted: 8 October 2024 | Published: 28 November 2024
© 2024 by the Bladder published by POL Scientific. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Background: The urethral wall consists of layers of striated muscle, circular and longitudinal smooth muscles, collagen fibers, and a vascular plexus. However, the relative contributions of these components to urethral pressure in humans remain poorly understood. The circular and longitudinal smooth muscle components can develop a spontaneous contractile activity, generating a basal tone. They can further contract or relax in response to excitatory or inhibitory stimuli. Animal studies suggest that smooth muscle activity in the mid-urethra plays a crucial role in determining maximal urethral closing pressure. Notably, the highest sympathetic activity occurs in the middle segment of the female urethra during increasing smooth muscle tone. This finding is supported by human studies that did not detect any electromyographic activity from striated muscle in this region. Objectives: This study was conducted to review the contributions of the primary structural components and control mechanisms of urethral. Conclusion: In females, the external urethral striated sphincter is located at the distal urethra, which is not the segment associated with the highest closing pressure. Rather, the sphincter has been shown to modulate urethral pressure during exercise and physical stress. Basic science research does not support the notion that mid-urethral pressure is caused by the external striated sphincter tone in females. Instead, findings suggest that, at rest and during bladder filling, maximal urethral pressure is primarily determined by the activity of the urethral smooth muscles.

Keywords
Urethra
Striated muscle
Smooth muscle
Vascular plexus
Funding
None.
References
  1. Attari A, DeLancey JO, Ashton-Miller JA. On structure-function relationships in the female human urethra: A finite element model approach. Ann Biomed Eng. 2021;49(8):1848-1860. doi: 10.1007/s10439-021-02765-4

 

  1. Pipitone F, Sadeghi Z, DeLancey JOL. Urethral function and failure: A review of current knowledge of urethral closure mechanisms, how they vary, and how they are affected by life events. Neurourol Urodyn. 2021;40(8):1869-1879. doi: 10.1002/nau.24760

 

  1. Venema PL, Kramer G, van Koeveringe GA, Heesakkers JPFA. The maximal urethral pressure at rest and during normal bladder filling is only determined by the activity of the urethral smooth musculature in the female. J Clin Med. 2023;12(7):2575. doi: 10.3390/jcm12072575

 

  1. McCloskey KD, Kanai A, Panicker JN, Hashitani H, Fry CH. What do we really know about the external urethral sphincter? Continence, 10: 101223.

 

  1. Rud T, Andersson KE, Asmussen M, Hunting A, Ulmsten U. Factors maintaining the intraurethral pressure in women. Invest Urol. 1980;17(4):343-347.

 

  1. van Geelen H, Sand PK. The female urethra: Urethral function throughout a woman’s lifetime. Int Urogynecol J. 2023;34(6):1175-1186. doi: 10.1007/s00192-023-05469-6

 

  1. Hinata N, Murakami G. The urethral rhabdosphincter, levator ani muscle, and perineal membrane: A review. Biomed Res Int. 2014;2014:906921. doi: 10.1155/2014/906921

 

  1. Gosling JA. The structure of the bladder neck, urethra and pelvic floor in relation to female urinary continence. Int Urogynecol J Pelvic Floor Dysfunct. 1996;7(4):177-178. doi: 10.1007/BF01907068

 

  1. Gosling JA. The structure of the female lower urinary tract and the pelvic foor. Urol Clin North Am. 1985;12:207-214.

 

  1. Delancey JOL. Structural aspects of the extrinsic continence mechanism. Obstet Gynecol. 1988;72:296-301.

 

  1. Sawano, S., Mizunoya W. History and development of staining methods for skeletal muscle fiber types. Histol Histopathol. 2022;37(6):493-503. doi: 10.14670/HH-18-422

 

  1. Schellino R, Boido M, Vercelli A. The dual nature of onuf’s nucleus: Neuroanatomical features and peculiarities, in health and disease. Front Neuroanat. 2020;14:572013. doi: 10.3389/fnana.2020.572013

 

  1. Panicker JN. The Onuf’s nucleus, serotonin and spinal cord injury. BJU Int. 2019;123(4):716-717. doi: 10.1111/bju.14634

 

  1. Xu C, Giuliano F, Sun XQ, et al. Serotonin 5-HT2A and 5-HT5A receptors are expressed by different motoneuron populations in rat Onuf’s nucleus. J Comp Neurol. 2007;502(4):620-634. doi: 10.1002/cne.21344

 

  1. Michel MC, Peters SL. Role of serotonin and noradrenaline in stress urinary incontinence. BJU Int. 2004;94 Suppl 1:23-30. doi: 10.1111/j.1464-410X.2004.04811.x

 

  1. Mbaki Y, Ramage AG. Investigation of the role of 5‐HT2 receptor subtypes in the control of the bladder and the urethra in the anaesthetized female rat. Br J Pharmacol. 2008;155(3):343‐356. doi: 10.1038/bjp.2008.27311

 

  1. Miyazato M, Kaiho Y, Kamo I, et al. Role of spinal serotonergic pathways in sneeze‐induced urethral continence reflex in rats. Am J Physiol Ren Physiol. 2009;297(4):F1024‐F1031. doi: 10.1152/ajprenal.00297.2009

 

  1. Suzuki T, Shimizu T, Kwon J, et al. Role of the serotonergic system in urethral continence reflexes during sneezing in rats. Am J Physiol Ren Physiol. 2018;315(1):F79‐F85. doi: 10.1152/ajprenal.00614.2017

 

  1. Kamo I, Nagata H, O’Connell G, et al. Increasing effects of selective 5‐hydroxytryptamine type 2C receptor stimulation on evoked momentary urethral closure in female rats and humans. J Pharmacol Exp Ther. 2021;378(2):60‐68. doi: 10.1124/jpet.121.00057

 

  1. Klarskov N, Van Till O, Sawyer W, Cernus D, Sawyer W. Effect of a 5‐HT2c receptor agonist on urethral closure mechanism in healthy women. Neurourol Urodyn. 2019;38(6):1700‐1706. doi: 10.1002/nau.24045

 

  1. Christoffersen T, Kornholt J, Riis T, Sonne J, Sonne DP, Klarskov N. Effect of single doses of citalopram and reboxetine on urethral pressure: A randomized, double-blind, placebo-and active-controlled three-period crossover study in healthy women. Neurourol Urodyn. 2022;41(6):1482-1488. doi: 10.1002/nau.24985

 

  1. Andersson PO, Malmgren A, Uvelius B. Functional responses of different muscle types of the female rat urethra in vitro. Acta Physiol Scand. 1990;140(3):365-372. doi: 10.1111/j.1748-1716.1990.tb09011.x

 

  1. Brading AF, Teramoto N, Dass N, McCoy R. Morphological and physiological characteristics of urethral circular and longitudinal smooth muscle. Scand J Urol Nephrol Suppl. 2001;(207):12-18; discussion 106-125. doi: 10.1080/003655901750174818

 

  1. Arner A, Mattiasson A, Radzizewski P, Uvelius B. Shortening velocity is different in longitudinal and circular muscle layers of the rabbit urethra. Urol Res. 1998;26(6):423-426. doi: 10.1007/s002400050080

 

  1. Bridgewater M, MacNeil HF, Brading AF. Regulation of tone in pig urethral smooth muscle. J Urol. 1993;150(1):223-228. doi: 10.1016/s0022-5347(17)35451-4

 

  1. Mattiasson A, Andersson KE, Andersson PO, Larsson B, Sjögren C, Uvelius B. Nerve-mediated functions in the circular and longitudinal muscle layers of the proximal female rabbit urethra. J Urol. 1990;143(1):155-160. doi: 10.1016/s0022-5347(17)39901-9

 

  1. Michel MC, Vrydag W. Alpha1-, alpha2- and beta-adrenoceptors in the urinary bladder, urethra and prostate. Br J Pharmacol. 2006;147 Suppl 2(Suppl 2):S88-S119. doi: 10.1038/sj.bjp.0706619

 

  1. Michel MC, Cardozo L, Chermansky CJ, et al. Current and emerging pharmacological targets and treatments of urinary incontinence and related disorders. Pharmacol Rev. 2023;75(4):554-674. doi: 10.1124/pharmrev.121.000523

 

  1. Yamanishi T, Yasuda K, Kitahara S, Nakai H, Yoshida K, Iizuka H. Effects of 138-355, a beta3-adrenoceptor selective agonist, on relaxation of the human detrusor muscle in vitro. Neurourol Urodyn. 2006;25(7):815-819. doi: 10.1002/nau.20231

 

  1. Alexandre EC, Kiguti LR, Calmasini FB, et al. Mirabegron relaxes urethral smooth muscle by a dual mechanism involving β3-adrenoceptor activation and α1-adrenoceptor blockade. Br J Pharmacol. 2016;173(3):415-428. doi: 10.1111/bph.13367

 

  1. Kummeling MT, Buijs JT, Wisse LJ, et al. Initial report on distribution of β3-adrenoceptor in the human female urethra. Neurourol Urodyn. 2020;39(1):125-132. doi: 10.1002/nau.24183

 

  1. Zeng J, Ekman M, Grossi M, et al. Vasopressin-induced mouse urethral contraction is modulated by caveolin-1. Eur J Pharmacol. 2015;750:59-65. doi: 10.1016/j.ejphar.2015.01.029

 

  1. Canda AE, Cinar MG, Turna B, Sahin MO. Pharmacologic targets on the female urethra. Urol Int. 2008;80(4):341-354. doi: 10.1159/000132690

 

  1. Andersson KE, Persson K. Nitric oxide synthase and nitric oxide-mediated effects in lower urinary tract smooth muscles. World J Urol. 1994;12(5):274-280. doi: 10.1007/BF00191207

 

  1. Hashitani H, Mitsui R, Hirai Y, Tanaka H, Miwa-Nishimura K. Nitrergic inhibition of sympathetic arteriolar constrictions in the female rodent urethra. J Physiol. 2024;602(10):2199-2226. doi: 10.1113/JP285583

 

  1. Augsburger H, Müller U. Investigation of the female canine urethral vascular plexus using light and scanning electron microscopy: A contributing factor to urinary continence. Cells Tissues Organs. 2000;167(4):239-246. doi: 10.1159/000016786

 

  1. Huisman AB. Aspects on the anatomy of the female urethra with special relation to urinary continence. Contrin Gynecol Obstet. 1983;10:1-31.

 

  1. Beco J, Léonard D, Léonard F. Study of the female urethra’s submucous vascular plexus by color Doppler. World J Urol. 1998;16(3):224-228. doi: 10.1007/s003450050057

 

  1. Mattiasson A, Andersson KE Sjögren C. Contractant and relaxant properties of the female rabbit urethral submucosa. J Urol. 1985;133(2):304-310. doi: 10.1016/s0022-5347(17)48928-2

 

  1. Folasire OS, Chess-Williams R, Sellers DJ. Inhibitory effect of the urothelium/lamina propria on female porcine urethral contractility & effect of age. Clin Exp Pharmacol Physiol. 2017;44(9):954-960. doi: 10.1111/1440-1681.12779

 

  1. Andersson KE, Cruz Miranda Rodrigues F, Cardozo L, et al. (2023) Pharmacological treatment of urinary incontinence. In: Cardozo L, Rovner E, Wagg A, Wein A, Abrams P. Incontinence. 7th ed. ICS, ICUD; 2023.

 

  1. Williams JK, Dean A, Badlani G, Andersson KE. Regenerative medicine therapies for stress urinary incontinence. J Urol. 2016;196(6):1619-1626. doi: 10.1016/j.juro.2016.05.136

 

  1. Barakat B, Franke K, Schakaki S, Hijazi S, Hasselhof V, Vögeli TA. Stem cell applications in regenerative medicine for stress urinary incontinence: A review of effectiveness based on clinical trials. Arab J Urol. 2020;18(3):194-205. doi: 10.1080/2090598X.2020.1750864

 

  1. Mariotti G, Salciccia S, Viscuso P, et al. Regenerative medicine-based treatment of stress urinary incontinence with mesenchymal stem cells: A systematic review and meta-analysis. Curr Stem Cell Res Ther. 2023;18(3):429-437. doi: 10.2174/1574888X17666220616100621
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
Bladder, Electronic ISSN: 2327-2120 Print ISSN: TBA, Published by POL Scientific