AccScience Publishing / JBM / Online First / DOI: 10.14440/jbm.0299
REVIEW

Targeting multi-drug resistant pathogens with synergistic beta-lactams and beta-lactam inhibitor combinations

Mihaela Ileana Ionescu1,2*
Show Less
1 Department of Microbiology, Faculty of Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca 400349, Romania
2 Department of Microbiology, County Emergency Clinical Hospital, Cluj-Napoca 400006, Romania
Submitted: 2 April 2025 | Revised: 26 November 2025 | Accepted: 4 December 2025 | Published: 10 February 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Background: Infections caused by multidrug-resistant organisms pose a significant global health challenge due to the limited therapeutic options available. Synergistic drug combinations are often employed to enhance treatment efficacy. Because peptidoglycan is unique to prokaryotes, many studies focus on combinations that include beta-lactam antibiotics. To address bacterial strains that produce beta-lactamases, a range of beta-lactamase inhibitors has been developed. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Clinical and Laboratory Standards Institute (CLSI) regularly update clinical guidelines to include standards for new beta-lactam/beta-lactamase inhibitor combinations. Objective: This work provides an overview of beta-lactam and beta-lactamase inhibitor combinations, together with updated clinical guidelines and an analysis of the relevant Protein Data Bank (PDB) entries related to these synergistic combinations. First, the latest EUCAST and CLSI guidelines are reviewed to identify the most recent beta-lactam/beta-lactamase inhibitor combinations used in therapy. Next, PDB entries related to these combinations are examined and compared with new compounds under investigation. EUCAST and CLSI guidelines are valuable for guiding therapeutic strategies, not only for interpreting antibiograms. The newest beta-lactamase inhibitors include avibactam, relebactam, vaborbactam, and enmetazobactam. X-ray crystallography studies have enhanced understanding of inhibitor interactions with major beta-lactamases in Gram-negative pathogens—serine beta-lactamases and metallo-beta-lactamases. Conclusion: Investigating synergistic combinations of beta-lactams and beta-lactamase inhibitors is promising because beta-lactams target peptidoglycan and may enable new therapeutic strategies.

Keywords
Multi-drug resistance
Synergy
Beta-lactamase inhibitors
Beta-lactams
Funding
The work received partial financial support from the Iuliu Hațieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania.
Conflict of interest
Mihaela Ileana Ionescu is a Guest Editor of this special issue. The author declared that she has no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Zakrzewski AJ, Chajęcka-Wierzchowska W, Zadernowska A. Short communication: Low prevalence of clinically important antibiotic-resistant strains among non-pathogenic genera of the tribe klebsielleae. Foods. 2022;11(15):2270. doi: 10.3390/foods11152270

 

  1. Ishola AD, Ishola LT, Lawal R. PCR detection of extended spectrum β-lactamase from some gram negative bacteria of clinical source. Dutse J Pure Appl Sci. 2024;10(1b):203-212. doi: 10.4314/dujopas.v10i1b.21

 

  1. Paudel R, Shrestha E, Chapagain B, Tiwari BR. Carbapenemase producing gram negative bacteria: Review of resistance and detection methods. Diagn Microbiol Infect Dis. 2024;110(1):116370. doi: 10.1016/j.diagmicrobio.2024.116370

 

  1. Jean SS, Gould IM, Lee WS, Hsueh PR, International Society of Antimicrobial Chemotherapy (ISAC). New drugs for multidrug-resistant gram-negative organisms: Time for stewardship. Drugs. 2019;79(7):705-714. doi: 10.1007/s40265-019-01112-1

 

  1. Olney KB, Thomas JK, Johnson WM. Review of novel β-lactams and β-lactam/β-lactamase inhibitor combinations with implications for pediatric use. Pharmacotherapy. 2023;43(7):713-731. doi: 10.1002/phar.2782

 

  1. Rando E, Novy E, Sangiorgi F, et al. A systematic review of the pharmacokinetics and pharmacodynamics of novel beta-lactams and beta-lactam with beta-lactamase inhibitor combinations for the treatment of pneumonia caused by carbapenem-resistant gram-negative bacteria. Int J Antimicrob Agents. 2024;64(3):107266. doi: 10.1016/j.ijantimicag.2024.107266

 

  1. Sá Del Fiol F, Gerenutti M, Groppo FC. Antibiotics and pregnancy. Pharmazie. 2005;60(7):483-493.

 

  1. Hong DJ, Kim JO, Lee H, et al. In vitro antimicrobial synergy of colistin with rifampicin and carbapenems against colistin-resistant Acinetobacter baumannii clinical isolates. Diagn Microbiol Infect Dis. 2016;86(2):184-189. doi: 10.1016/J.DIAGMICROBIO.2016.07.017

 

  1. Laupland KB, Paterson DL, Stewart AG, Edwards F, Harris PNA. Sphingomonas paucimobilis bloodstream infection is a predominantly community-onset disease with significant lethality. Int J Infect Dis. 2022;119:172-177. doi: 10.1016/j.ijid.2022.03.060

 

  1. SeyedAlinaghi S, Mehraeen E, Mirzapour P, et al. A systematic review on natural products with antimicrobial potential against WHO’s priority pathogens. Eur J Med Res. 2025;30(1):525. doi: 10.1186/s40001-025-02717-x

 

  1. Laws M, Shaaban A, Rahman KM. Antibiotic resistance breakers: Current approaches and future directions. FEMS Microbiol Rev. 2019;43(5):490-516. doi: 10.1093/femsre/fuz014

 

  1. Bush K, Bradford PA. Interplay between β-lactamases and new β-lactamase inhibitors. Nat Rev Microbiol. 2019;17(5):295-306. doi: 10.1038/s41579-019-0159-8

 

  1. Sansone P, Giaccari LG, Di Flumeri G, et al. Imipenem/ cilastatin/relebactam for complicated infections: A real-world evidence. Life (Basel). 2024;14(5):614. doi: 10.3390/life14050614

 

  1. Heo YA. Imipenem/cilastatin/relebactam: A review in gram-negative bacterial infections. Drugs. 2021;81(3):377-388. doi: 10.1007/s40265-021-01471-8

 

  1. Alrabadi N, Albustami IS, Abuhayyeh HA, et al. Clavulanic acid in the scope of Helicobacter pylori treatment: A literature review and beyond. Curr Rev Clin Exp Pharmacol. 2021;16(2):128-138. doi: 10.2174/1574884715666200702121417

 

  1. Masoudi M, Mashreghi M, Zenhari A, Mashreghi A. Combinational antimicrobial activity of biogenic TiO2 NP/ ZnO NPs nanoantibiotics and amoxicillin-clavulanic acid against MDR-pathogens. Int J Pharm. 2024;652:123821. doi: 10.1016/j.ijpharm.2024.123821

 

  1. Guehria I, Ayari A, Degachi NE, Merzoug AN, Réjiba S. Antimicrobial activities and beta-lactamase inhibitory property of actinomycetes from Atlas forest soils in Northeastern Algeria. World J Microbiol Biotechnol. 2025;41(4):137. doi: 10.1007/s11274-025-04348-0

 

  1. Arasu MV, Viayaraghavan P, Ilavenil S, Al-Dhabi NA, Choi KC. Essential oil of four medicinal plants and protective properties in plum fruits against the spoilage bacteria and fungi. Ind Crops Prod. 2019;133:54-62. doi: 10.1016/j.indcrop.2019.03.018

 

  1. Miastkowska M, Sikora E, Kulawik-Pióro A, et al. Bioactive Lavandula angustifolia essential oil-loaded nanoemulsion dressing for burn wound healing. In vitro and in vivo studies. Biomater Adv. 2023;148:213362. doi: 10.1016/j.bioadv.2023.213362

 

  1. Wijesinghe GK, Feiria SB, Maia FC, et al. In-vitro antibacterial and antibiofilm activity of Cinnamomum verum leaf oil against Pseudomonas aeruginosa, staphylococcus aureus and Klebsiella pneumoniae. An Acad Bras Cienc. 2021;93(1):e20201507. doi: 10.1590/0001-3765202120201507

 

  1. De Simeis D, Serra S. Actinomycetes: A never-ending source of bioactive compounds-an overview on antibiotics production. Antibiotics (Basel). 2021;10(5):483. doi: 10.3390/antibiotics10050483

 

  1. Abullais Saquib S, Abdullah AlQahtani N, Ahmad I, et al. Synergistic antibacterial activity of herbal extracts with antibiotics on bacteria responsible for periodontitis. J Infect Dev Ctries. 2021;15(11):1685-1693. doi: 10.3855/jidc.14904

 

  1. Kaye KS, Shorr AF, Wunderink RG, et al. Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical tr. Lancet Infect Dis. 2023;23(9):1072-1084. doi: 10.1016/S1473-3099(23)00184-6

 

  1. Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289(1036):321-331. doi: 10.1098/rstb.1980.0049

 

  1. Ambler RP, Coulson AF, Frère JM, et al. A standard numbering scheme for the class A beta-lactamases. Biochem J. 1991;276(Pt 1(Pt 1):269-270. doi: 10.1042/bj2760269

 

  1. Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O, Frère JM. Standard numbering scheme for class B beta-lactamases. Antimicrob Agents Chemother. 2001;45(3):660-663. doi: 10.1128/AAC.45.3.660-663.2001

 

  1. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211-1233. doi: 10.1128/AAC.39.6.1211

 

  1. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969-976. doi: 10.1128/AAC.01009-09

 

  1. Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289(1036):321-331. doi: 10.1098/rstb.1980.0049

 

  1. Mackenzie AK, Valegård K, Iqbal A, et al. Crystal structures of an oligopeptide-binding protein from the biosynthetic pathway of the beta-lactamase inhibitor clavulanic acid. J Mol Biol. 2010;396(2):332-344. doi: 10.1016/j.jmb.2009.11.045

 

  1. Benson JM, Nahata MC. Sulbactam/ampicillin, a new beta-lactamase inhibitor/beta-lactam antibiotic combination. Drug Intell Clin Pharm. 1988;22(7-8):534-541. doi: 10.1177/106002808802200702

 

  1. McLeod SM, Moussa SH, Hackel MA, Miller AA. In vitro activity of sulbactam-durlobactam against Acinetobacter baumannii-Calcoaceticus complex isolates collected globally in 2016 and 2017. Antimicrob Agents Chemother. 2020;64(4):e02534-19. doi: 10.1128/aac.02534-19

 

  1. Danelon G, Mascaretti O, Radice M, et al. Comparative in-vitro activities of GD-40 and other beta-lactamase inhibitors against TEM-1 and SHV-2 beta-lactamases. J Antimicrob Chemother. 1998;41(2):313-315. doi: 10.1093/jac/41.2.313

 

  1. Stewart S, Nonnemacher C, Saylors S, et al. Antibiotic monotherapy vs dual-drug therapy in perforated appendicitis: Single-center retrospective review. Pediatr Surg Int. 2025;41(1):225. doi: 10.1007/s00383-025-06129-0

 

  1. Lahiri SD, Johnstone MR, Ross PL, McLaughlin RE, Olivier NB, Alm RA. Avibactam and class C β-lactamases: Mechanism of inhibition, conservation of the binding pocket, and implications for resistance. Antimicrob Agents Chemother. 2014;58(10):5704-5713. doi: 10.1128/AAC.03057-14

 

  1. Volkow-Fernández P, Pineda-Benitez S, Alatorre-Fernández P, Islas-Muñoz B, Velázquez-Acosta C, Cornejo-Juárez P. Clinical outcomes in patients with cancer and Gram-negative bloodstream infection: Impact of carbapenem resistance. Support Care Cancer. 2025;33(8):694. doi: 10.1007/s00520-025-09746-6

 

  1. Lucasti C, Vasile L, Sandesc D, et al. Phase 2, dose-ranging study of relebactam with imipenem-cilastatin in subjects with complicated intra-abdominal infection. Antimicrob Agents Chemother. 2016;60(10):6234-6243. doi: 10.1128/AAC.00633-16

 

  1. Marino A, Maraolo AE, Mazzitelli M, et al. Head-to-head: Meropenem/vaborbactam versus ceftazidime/avibactam in ICUs patients with KPC-producing K. Pneumoniae infections- results from a retrospective multicentre study. Infection. 2025;53:2645-2658. doi: 10.1007/s15010-025-02608-7

 

  1. Belati A, Bavaro DF, Diella L, De Gennaro N, Di Gennaro F, Saracino A. Meropenem/vaborbactam plus aztreonam as a possible treatment strategy for bloodstream infections caused by ceftazidime/avibactam-resistant Klebsiella pneumoniae: A retrospective case series and literature review. Antibiotics (Basel). 2022;11(3):373. doi: 10.3390/antibiotics11030373

 

  1. Bhowmick T, Canton R, Pea F, et al. Cefepime-enmetazobactam: First approved cefepime-β- lactamase inhibitor combination for multi-drug resistant Enterobacterales. Future Microbiol. 2025;20(4):277-286. doi: 10.1080/17460913.2025.2468112

 

  1. Liu B, Trout REL, Chu GH, et al. Discovery of taniborbactam (VNRX-5133): A broad-spectrum serine- and metallo- β-lactamase inhibitor for carbapenem-resistant bacterial infections. J Med Chem. 2020;63(6):2789-2801. doi: 10.1021/acs.jmedchem.9b01518

 

  1. Le Terrier C, Drusin SI, Nordmann P, et al. The emerging concern of IMP variants being resistant to the only IMP-type metallo-β-lactamase inhibitor, xeruborbactam. Antimicrob Agents Chemother. 2025;69(7):e0029725. doi: 10.1128/aac.00297-25

 

  1. Sun D, Tsivkovski R, Pogliano J, et al. Intrinsic antibacterial activity of Xeruborbactam In vitro: Assessing spectrum and mode of action. Antimicrob Agents Chemother. 2022;66(10):e0087922. doi: 10.1128/aac.00879-22

 

  1. Bersani M, Failla M, Vascon F, et al. Structure-based optimization of 1,2,4-triazole-3-thione derivatives: Improving inhibition of NDM-/VIM-type metallo-β-lactamases and synergistic activity on resistant bacteria. Pharmaceuticals (Basel). 2023;16(12):1682. doi: 10.3390/ph16121682

 

  1. Theuretzbacher U. The global resistance problem and the clinical antibacterial pipeline. Nat Rev Microbiol. 2025;23(8):491-508. doi: 10.1038/s41579-025-01169-8

 

  1. Misawa K, Nishimura T, Yoshikawa M, et al. Combined dual β-lactams and diazabicyclooctane β-lactamase inhibitor is highly effective against Mycobacterium abscessus species in vitro. J Glob Antimicrob Resist. 2025;42:142-150. doi: 10.1016/j.jgar.2025.02.015

 

  1. Al-Marzooq F, Ghazawi A, Alshamsi M, et al. Genomic approach to evaluate the intrinsic antibacterial activity of novel diazabicyclooctanes (zidebactam and nacubactam) against clinical Escherichia coli isolates from diverse clonal lineages in the United Arab Emirates. J Infect Public Health. 2025;18(6):102761.doi: 10.1016/j.jiph.2025.102761

 

  1. Hoff JF, Goudar KE, Calvopiña K, et al. Electrostatic interactions influence diazabicyclooctane inhibitor potency against OXA- 48-like β-lactamases. RSC Med Chem. 2025;16:5441-5455. doi: 10.1039/D5MD00512D

 

  1. Sader HS, Rhomberg PR, Flamm RK, Jones RN, Castanheira M. WCK 5222 (cefepime/zidebactam) antimicrobial activity tested against Gram-negative organisms producing clinically relevant β-lactamases. J Antimicrob Chemother. 2017;72(6):1696-1703. doi: 10.1093/jac/dkx050

 

  1. Karlowsky JA, Hackel MA, Bouchillon SK, Sahm DF. In vitro activity of WCK 5222 (cefepime-zidebactam) against worldwide collected gram-negative Bacilli not susceptible to carbapenems. Antimicrob Agents Chemother. 2020;64(12):e01432-20. doi: 10.1128/AAC.01432-20

 

  1. Thomson KS, AbdelGhani S, Snyder JW, Thomson GK. Activity of cefepime-zidebactam against multidrug-resistant (MDR) gram-negative pathogens. Antibiotics (Basel). 2019;8(1):32. doi: 10.3390/antibiotics8010032

 

  1. Lang PA, Leissing TM, Page MGP, Schofield CJ, Brem J. Structural investigations of the inhibition of Escherichia coli AmpC β-lactamase by diazabicyclooctanes. Antimicrob Agents Chemother. 2021;65(2):e02073-20. doi: 10.1128/AAC.02073-20

 

  1. Davies DT, Leiris S, Zalacain M, et al. Discovery of ANT3310, a novel broad-spectrum serine β-lactamase inhibitor of the diazabicyclooctane class, which strongly potentiates meropenem activity against carbapenem-resistant enterobacterales and Acinetobacter baumannii. J Med Chem. 2020;63(24):15802-15820. doi: 10.1021/acs.jmedchem.0c01535

 

  1. Leiris S, Coelho A, Castandet J, et al. SAR studies leading to the identification of a novel series of metallo-β-lactamase inhibitors for the treatment of carbapenem-resistant enterobacteriaceae infections that display efficacy in an animal infection model. ACS Infect Dis. 2019;5(1):131-140. doi: 10.1021/acsinfecdis.8b00246

 

  1. Xiang Y, Zhang YJ, Ge Y, et al. Kinetic, thermodynamic, and crystallographic studies of 2-triazolylthioacetamides as verona integron-encoded metallo-β-lactamase 2 (VIM-2) inhibitor. Biomolecules. 2020;10(1):72. doi: 10.3390/biom10010072

 

  1. Durand-Réville TF, Guler S, Comita-Prevoir J, et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant gram-negative bacteria including Acinetobacter baumannii. Nat Microbiol. 2017;2:17104. doi: 10.1038/nmicrobiol.2017.104

 

  1. Uehara T, Chatwin CL, Miller B, et al. Spectrum of cefepime-taniborbactam coverage against 190 β-lactamases defined in engineered isogenic Escherichia coli strains. Antimicrob Agents Chemother. 2025;69(5):e0169924. doi: 10.1128/aac.01699-24

 

  1. Caselli E, Powers RA, Blasczcak LC, Wu CY, Prati F, Shoichet BK. Energetic, structural, and antimicrobial analyses of beta-lactam side chain recognition by beta-lactamases. Chem Biol. 2001;8(1):17-31. doi: 10.1016/s1074-5521(00)00052-1

 

  1. Sun T, Bethel CR, Bonomo RA, Knox JR. Inhibitor-resistant class A beta-lactamases: consequences of the Ser130-to-Gly mutation seen in Apo and tazobactam structures of the SHV-1 variant. Biochemistry. 2004;43(44):14111-14117. doi: 10.1021/bi0487903

 

  1. Soeung V, Lu S, Hu L, et al. A drug-resistant β-lactamase variant changes the conformation of its active-site proton shuttle to alter substrate specificity and inhibitor potency. J Biol Chem. 2020;295(52):18239-18255. doi: 10.1074/jbc.RA120.016103

 

  1. Rodkey EA, Winkler ML, Bethel CR, et al. Penam sulfones and β-lactamase inhibition: SA2-13 and the importance of the C2 side chain length and composition. PLoS One. 2014;9(1):e85892. doi: 10.1371/journal.pone.0085892

 

  1. Wang X, Minasov G, Shoichet BK. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J Mol Biol. 2002;320(1):85-95. doi: 10.1016/S0022-2836(02)00400-X

 

  1. Datta N, Kontomichalou P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature. 1965;208(5007):239-241. doi: 10.1038/208239a0

 

  1. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933-951. doi: 10.1128/CMR.14.4.933-951.2001

 

  1. Thomas VL, Golemi-Kotra D, Kim C, Vakulenko SB, Mobashery S, Shoichet BK. Structural consequences of the inhibitor-resistant Ser130Gly substitution in TEM beta-lactamase. Biochemistry. 2005;44(26):9330-9338. doi: 10.1021/bi0502700

 

  1. Wang X, Minasov G, Blázquez J, Caselli E, Prati F, Shoichet BK. Recognition and resistance in TEM beta-lactamase. Biochemistry. 2003;42(28):8434-8444. doi: 10.1021/bi034242y

 

  1. Bauernfeind A, Grimm H, Schweighart S. A new plasmidic cefotaximase in a clinical isolate of Escherichia coli. Infection. 1990;18(5):294-298. doi: 10.1007/BF01647010

 

  1. Heritage J, M’Zali FH, Gascoyne-Binzi D, Hawkey PM. Evolution and spread of SHV extended-spectrum beta-lactamases in gram-negative bacteria. J Antimicrob Chemother. 1999;44(3):309-318. doi: 10.1093/jac/44.3.309

 

  1. Winkler ML, Rodkey EA, Taracila MA, et al. Design and exploration of novel boronic acid inhibitors reveals important interactions with a clavulanic acid-resistant sulfhydryl-variable (SHV) beta-lactamase. J Med Chem. 2013;56(3):1084-1097. doi: 10.1021/jm301490d

 

  1. Ke W, Rodkey EA, Sampson JM, et al. The importance of the trans-enamine intermediate as a β-lactamase inhibition strategy probed in inhibitor-resistant SHV β-lactamase variants. ChemMedChem. 2012;7(6):1002-1008.doi: 10.1002/cmdc.201200006

 

  1. Calvopiña K, Hinchliffe P, Brem J, et al. Structural/mechanistic insights into the efficacy of nonclassical β-lactamase inhibitors against extensively drug resistant Stenotrophomonas maltophilia clinical isolates. Mol Microbiol. 2017;106(3):492-504. doi: 10.1111/mmi.13831

 

  1. Goldberg JA, Nguyen H, Kumar V, et al. A γ-lactam siderophore antibiotic effective against multidrug-resistant gram-negative Bacilli. J Med Chem. 2020;63(11):5990-6002. doi: 10.1021/acs.jmedchem.0c00255

 

  1. Goldberg JA, Kumar V, Spencer EJ, et al. A γ-lactam siderophore antibiotic effective against multidrug-resistant Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter spp. Eur J Med Chem. 2021;220:113436. doi: 10.1016/j.ejmech.2021.113436

 

  1. Janardhanan J, Bouley R, Martínez-Caballero S, et al. The quinazolinone allosteric inhibitor of PBP 2a synergizes with piperacillin and tazobactam against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2019;63(5):e02637-18. doi: 10.1128/AAC.02637-18

 

  1. Uehara T, Zulli AL, Miller B, et al. A New Class of Penicillin- Binding Protein Inhibitors to Address Drug-Resistant Neisseria gonorrhoeae. [bioRxiv Preprint]; 2024. doi: 10.1101/2024.12.27.630553

 

  1. Nguyen VT, Birhanu BT, Miguel-Ruano V, et al. Restoring susceptibility to β-lactam antibiotics in methicillin-resistant Staphylococcus aureus. Nat Chem Biol. 2025;21(4):482-489. doi: 10.1038/s41589-024-01688-0

 

  1. Fu LM, Fu-Liu CS. Is Mycobacterium tuberculosis a closer relative to gram-positive or gram-negative bacterial pathogens? Tuberculosis (Edinb). 2002;82(2-3):85-90. doi: 10.1054/tube.2002.0328

 

  1. Kurz SG, Wolff KA, Hazra S, et al. Can inhibitor-resistant substitutions in the Mycobacterium tuberculosis β-Lactamase BlaC lead to clavulanate resistance?: A biochemical rationale for the use of β-lactam-β-lactamase inhibitor combinations. Antimicrob Agents Chemother. 2013;57(12):6085-6096. doi: 10.1128/AAC.01253-13

 

  1. Totir MA, Padayatti PS, Helfand MS, et al. Effect of the inhibitor-resistant M69V substitution on the structures and populations of trans-enamine beta-lactamase intermediates. Biochemistry. 2006;45(39):11895-11904. doi: 10.1021/bi060990m
Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific