Cation exchange membrane chromatography: An efficient alternative to multi-column for avoiding the impact of loading density variation on performance
Background: Resin-based cation exchange (CEX) column chromatography is widely used for charge variant separation/reduction. However, in a CEX process where a wash step is introduced to reduce weakly bound acidic charge variants, its performance is greatly affected by the loading density, resulting in poor robustness. We previously demonstrated that multi-column chromatography could resovle this problem, with the key strategy involving converting 3–4 large cycles into a greater number of small cycles. Recently, membrane chromatography has emerged as a promising alternative to column chromatography. CEX membrane, which can be operated under high flow rate, naturally supports the conversion of a large cycle into numerous small cycles. Objective: This study aimed to demonstrate that CEX membrane chromatography offers a superior option for addressing the low robustness in the chromatography’s wash step. Methods: CEX membrane chromatography was applied to reduce acidic charge variants, and its effectiveness was evaluated using capillary isoelectric focusing analysis of the purified samples. Results: Under appropriate conditions, CEX membrane chromatography consistently lowered acidic charge variants to the required level. Conclusion: Compared to the multi-column approach, CEX membrane chromatography allows for a more straightforward implementation, has higher productivity, and achieves greater cost efficiency. Therefore, it serves as a better alternative to address the low robustness issue.
- Vlasak J, Ionescu R. Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Curr Pharm Biotechnol. 2008;9(6):468-481. doi: 10.2174/138920108786786402
- Du Y, Walsh A, Ehrick R, Xu W, May K, Liu H. Chromatographic analysis of the acidic and basic species of recombinant monoclonal antibodies. MAbs. 2012;4(5):578-585. doi: 10.4161/mabs.21328
- Dakshinamurthy P, Mukunda P, Kodaganti BP, Shenoy B.R., Natarajan B., Maliwalave A, et al. Charge variant analysis of proposed biosimilar to Trastuzumab. Biologicals. 2017;46:46-56. doi: 10.1016/j.biologicals.2016.12.006
- Harris RJ, Kabakoff B, Macchi FD, et al. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl. 2001;752(2):233-245. doi: 10.1016/s0378-4347(00)00548-x
- Boswell CA, Tesar DB, Mukhyala K, Theil FP, Fielder PJ, Khawli LA. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem. 2010;21(12):2153-2163. doi: 10.1021/bc100261d
- Chung S, Tian J, Tan Z, et al. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng. 2018;115:1646-1665. doi: 10.1002/bit.26587
- Beck A, Nowak C, Meshulam D, et al. Risk-based control strategies of recombinant monoclonal antibody charge variants. Antibodies (Basel). 2022;11:73. doi: 10.3390/antib11040073
- Zhou JX, Dermawan S, Solamo F, et al. pH-conductivity hybrid gradient cation-exchange chromatography for process-scale monoclonal antibody purification. J Chromatogr A. 2007;1175(1):69-80. doi: 10.1016/j.chroma.2007.10.028
- Fekete S, Beck A, Fekete J, Guillarme D. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part I: Salt gradient approach. J Pharm Biomed Anal. 2015;102:33-44. doi: 10.1016/j.jpba.2014.08.035
- Fekete S, Beck A, Fekete J, Guillarme D. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part II: pH gradient approach. J Pharm Biomed Anal. 2015;102:282-289. doi: 10.1016/j.jpba.2014.09.032
- Lee HJ, Lee CM, Kim K, et al. Purification of antibody fragments for the reduction of charge variants using cation exchange chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1080:20-26. doi: 10.1016/j.jchromb.2018.01.030
- Jing SY, Gou JX, Gao D, Wang HB, Yao SJ, Ling DQ. Separation of monoclonal antibody charge variants using cation exchange chromatography: Resins and separation conditions optimization. Sep Purif Technol. 2020;235:116136. doi: 10.1016/j.seppur.2019.116136
- Yuan G, Qu M, Bu Y, Zhang X, Li Y. Multi-column continuous chromatography effectively improves the robustness of bind-elute mode chromatography in which a pre-elution wash is applied to reduce weakly bound impurities and charge variants. J Biol Methods. 2025;12:e99010046. doi: 10.14440/jbm.2025.0105
- Orr V, Zhong L, Moo-Young M, Chou CP. Recent advances in bioprocessing application of membrane chromatography. Biotechnol Adv. 2013;31(4):450-465. doi: 10.1016/j.biotechadv.2013.01.007
- Liu Z, Wickramasinghe SR, Qian X. Membrane chromatography for protein purifications from ligand design to functionalization. Sep Sci Technol. 2017;52:299-319. doi: 10.1080/01496395.2016.1223133
- Nadar S, Shooter G, Somasundaram B, Shave E, Baker K, Lua LHL. Intensified downstream processing of monoclonal antibodies using membrane technology. Biotechnol J. 2021;16(3):e2000309. doi: 10.1002/biot.202000309
- Chen J, Yu B, Cong H, Shen Y. Recent development and application of membrane chromatography. Anal Bioanal Chem. 2023;415(1):45-65. doi: 10.1007/s00216-022-04325-8
- Qu Y, Bekard I, Hunt B, et al. The transition from resin chromatography to membrane adsorbers for protein separations at industrial scale. Sep Purif Rev. 2023;53(4):351-371. doi: 10.1080/15422119.2023.2226128
- Hardick O, Dods S, Stevens B, Bracewell DG. Nanofiber adsorbents for high productivity downstream processing. Biotechnol Bioeng. 2013;110(4):1119-1128. doi: 10.1002/bit.24765
- Millipore. Natrix CH Chromatography Membrane. Available from: https://www.sigmaaldrich.com/deepweb/ assets/sigmaaldrich/product/documents/410/146/natrix-ch-chromatography-membrane-ds12043en-mk.pdf [Last accessed on 2025 Nov 21].
- Pall Mustang S Capsules. Available from: https:// cdn.cytivalifesciences.com/api/public/content/g-dSYEMbFUSQgzMTg9rKXQ-pdf [Last accessed on 2025 Nov 21].
- Sartobind Q and S. Available from: https://www.sartorius.hr/ media/itlhlywj/usermanual-en-manual-sartobind-q-s-4-8mm-caps-cassettes-sl-6210-e.pdf [Last accessed on 2025 Nov 21].
- Brown A, Bill J, Tully T, Radhamohan A, Dowd C. Overloading ion-exchange membranes as a purification step for monoclonal antibodies. Biotechnol Appl Biochem. 2010;56(2):59-70. doi: 10.1042/ba20090369
- Sadavarte R, Madadkar P, Filipe CD, Ghosh R. Rapid preparative separation of monoclonal antibody charge variants using laterally-fed membrane chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1073:27-33. doi: 10.1016/j.jchromb.2017.12.003
- Muthukumar S, Muralikrishnan T, Mendhe R, Rathore AS. Economic benefits of membrane chromatography versus packed bed column purification of therapeutic proteins expressed in microbial and mammalian hosts. J Chem Technol Biotechnol. 2017;92(1):59-68. doi: 10.1002/jctb.5064
- Nadar S, Somasundaram B, Charry M, et al. Design and optimization of membrane chromatography for monoclonal antibody charge variant separation. Biotechnol Prog. 2022;38(6):e3288. doi: 10.1002/btpr.3288
- Madadkar P, Ghosh R. High-resolution protein separation using a laterally-fed membrane chromatography device. J Membr Sci. 2016;499:126-133. doi: 10.1016/j.memsci.2015.10.041
- Chen G, Wan Y, Ghosh R. Bioseparation using membrane chromatography: Innovations, and challenges. J Chromatogr A. 2025;1744:465733. doi: 10.1016/j.chroma.2025.465733
- Phillips M, Cormier J, Ferrence J, et al. Performance of a membrane adsorber for trace impurity removal in biotechnology manufacturing. J Chromatogr A. 2005;1078(1-2):74-82. doi: 10.1016/j.chroma.2005.05.007
- Osuofa J, Husson SM. Comparative evaluation of commercial protein A membranes for the rapid purification of antibodies. Membranes (Basel). 2023;13(5):511. doi: 10.3390/membranes13050511
- Lemma SM, Boi C, Carbonell RG. Nonwoven ion-exchange membranes with high protein binding capacity for bioseparations. Membranes (Basel). 2021;11(3):181.doi: 10.3390/membranes11030181
- Yang S, Braczkowski R, Chen SH, et al. Scalability of sartobind ® rapid a membrane for high productivity monoclonal antibody capture. Membranes (Basel). 2023;13(10):815. doi: 10.3390/membranes13100815
- Wang X, Wei L, Zhang S, et al. Application of integrated full‑membrane platform in antibody purification. Biotechnol Bioprocess Eng. 2025;30:139-149. doi: 10.1007/s12257-024-00162-x
- Chen X, Wang Y, Li Y. Removing half antibody byproduct by Protein A chromatography during the purification of a bispecific antibody. Protein Expr Purif. 2020;172:105635. doi: 10.1016/j.pep.2020.105635
- Yuan G, Qu M, Li Y. Effective and robust separation of half-antibody byproduct in bispecific antibody purification by Sartobind Rapid A Protein A membrane chromatography. Protein Expr Purif. 2026;237:106823. doi: 10.1016/j.pep.2025.106823
