AccScience Publishing / JBM / Online First / DOI: 10.14440/jbm.0213
RESEARCH ARTICLE

Cation exchange membrane chromatography: An efficient alternative to multi-column for avoiding the impact of loading density variation on performance

Gaoya Yuan1 Meng Qu1 Yifeng Li1*
Show Less
1 Downstream Process Development (DSPD), WuXi Biologics, Shanghai 200131, China
Submitted: 22 July 2025 | Revised: 26 September 2025 | Accepted: 9 October 2025 | Published: 27 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Background: Resin-based cation exchange (CEX) column chromatography is widely used for charge variant separation/reduction. However, in a CEX process where a wash step is introduced to reduce weakly bound acidic charge variants, its performance is greatly affected by the loading density, resulting in poor robustness. We previously demonstrated that multi-column chromatography could resovle this problem, with the key strategy involving converting 3–4 large cycles into a greater number of small cycles. Recently, membrane chromatography has emerged as a promising alternative to column chromatography. CEX membrane, which can be operated under high flow rate, naturally supports the conversion of a large cycle into numerous small cycles. Objective: This study aimed to demonstrate that CEX membrane chromatography offers a superior option for addressing the low robustness in the chromatography’s wash step. Methods: CEX membrane chromatography was applied to reduce acidic charge variants, and its effectiveness was evaluated using capillary isoelectric focusing analysis of the purified samples. Results: Under appropriate conditions, CEX membrane chromatography consistently lowered acidic charge variants to the required level. Conclusion: Compared to the multi-column approach, CEX membrane chromatography allows for a more straightforward implementation, has higher productivity, and achieves greater cost efficiency. Therefore, it serves as a better alternative to address the low robustness issue.

Keywords
Acidic charge variant
Bind–elute mode
Cation exchange membrane
Robustness
Wash
Weakly bound byproduct
Funding
None.
Conflict of interest
The authors are employees of WuXi Biologics (Shanghai) Co., Ltd. The authors declare that this affiliation did not influence the study design, data interpretation, or manuscript preparation. No other conflicts of interest, financial or otherwise, are declared.
References
  1. Vlasak J, Ionescu R. Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods. Curr Pharm Biotechnol. 2008;9(6):468-481. doi: 10.2174/138920108786786402

 

  1. Du Y, Walsh A, Ehrick R, Xu W, May K, Liu H. Chromatographic analysis of the acidic and basic species of recombinant monoclonal antibodies. MAbs. 2012;4(5):578-585. doi: 10.4161/mabs.21328

 

  1. Dakshinamurthy P, Mukunda P, Kodaganti BP, Shenoy B.R., Natarajan B., Maliwalave A, et al. Charge variant analysis of proposed biosimilar to Trastuzumab. Biologicals. 2017;46:46-56. doi: 10.1016/j.biologicals.2016.12.006

 

  1. Harris RJ, Kabakoff B, Macchi FD, et al. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl. 2001;752(2):233-245. doi: 10.1016/s0378-4347(00)00548-x

 

  1. Boswell CA, Tesar DB, Mukhyala K, Theil FP, Fielder PJ, Khawli LA. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem. 2010;21(12):2153-2163. doi: 10.1021/bc100261d

 

  1. Chung S, Tian J, Tan Z, et al. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng. 2018;115:1646-1665. doi: 10.1002/bit.26587

 

  1. Beck A, Nowak C, Meshulam D, et al. Risk-based control strategies of recombinant monoclonal antibody charge variants. Antibodies (Basel). 2022;11:73. doi: 10.3390/antib11040073

 

  1. Zhou JX, Dermawan S, Solamo F, et al. pH-conductivity hybrid gradient cation-exchange chromatography for process-scale monoclonal antibody purification. J Chromatogr A. 2007;1175(1):69-80. doi: 10.1016/j.chroma.2007.10.028

 

  1. Fekete S, Beck A, Fekete J, Guillarme D. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part I: Salt gradient approach. J Pharm Biomed Anal. 2015;102:33-44. doi: 10.1016/j.jpba.2014.08.035

 

  1. Fekete S, Beck A, Fekete J, Guillarme D. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part II: pH gradient approach. J Pharm Biomed Anal. 2015;102:282-289. doi: 10.1016/j.jpba.2014.09.032

 

  1. Lee HJ, Lee CM, Kim K, et al. Purification of antibody fragments for the reduction of charge variants using cation exchange chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1080:20-26. doi: 10.1016/j.jchromb.2018.01.030

 

  1. Jing SY, Gou JX, Gao D, Wang HB, Yao SJ, Ling DQ. Separation of monoclonal antibody charge variants using cation exchange chromatography: Resins and separation conditions optimization. Sep Purif Technol. 2020;235:116136. doi: 10.1016/j.seppur.2019.116136

 

  1. Yuan G, Qu M, Bu Y, Zhang X, Li Y. Multi-column continuous chromatography effectively improves the robustness of bind-elute mode chromatography in which a pre-elution wash is applied to reduce weakly bound impurities and charge variants. J Biol Methods. 2025;12:e99010046. doi: 10.14440/jbm.2025.0105

 

  1. Orr V, Zhong L, Moo-Young M, Chou CP. Recent advances in bioprocessing application of membrane chromatography. Biotechnol Adv. 2013;31(4):450-465. doi: 10.1016/j.biotechadv.2013.01.007

 

  1. Liu Z, Wickramasinghe SR, Qian X. Membrane chromatography for protein purifications from ligand design to functionalization. Sep Sci Technol. 2017;52:299-319. doi: 10.1080/01496395.2016.1223133

 

  1. Nadar S, Shooter G, Somasundaram B, Shave E, Baker K, Lua LHL. Intensified downstream processing of monoclonal antibodies using membrane technology. Biotechnol J. 2021;16(3):e2000309. doi: 10.1002/biot.202000309

 

  1. Chen J, Yu B, Cong H, Shen Y. Recent development and application of membrane chromatography. Anal Bioanal Chem. 2023;415(1):45-65. doi: 10.1007/s00216-022-04325-8

 

  1. Qu Y, Bekard I, Hunt B, et al. The transition from resin chromatography to membrane adsorbers for protein separations at industrial scale. Sep Purif Rev. 2023;53(4):351-371. doi: 10.1080/15422119.2023.2226128

 

  1. Hardick O, Dods S, Stevens B, Bracewell DG. Nanofiber adsorbents for high productivity downstream processing. Biotechnol Bioeng. 2013;110(4):1119-1128. doi: 10.1002/bit.24765

 

  1. Millipore. Natrix CH Chromatography Membrane. Available from: https://www.sigmaaldrich.com/deepweb/ assets/sigmaaldrich/product/documents/410/146/natrix-ch-chromatography-membrane-ds12043en-mk.pdf [Last accessed on 2025 Nov 21].

 

  1. Pall Mustang S Capsules. Available from: https:// cdn.cytivalifesciences.com/api/public/content/g-dSYEMbFUSQgzMTg9rKXQ-pdf [Last accessed on 2025 Nov 21].

 

  1. Sartobind Q and S. Available from: https://www.sartorius.hr/ media/itlhlywj/usermanual-en-manual-sartobind-q-s-4-8mm-caps-cassettes-sl-6210-e.pdf [Last accessed on 2025 Nov 21].

 

  1. Brown A, Bill J, Tully T, Radhamohan A, Dowd C. Overloading ion-exchange membranes as a purification step for monoclonal antibodies. Biotechnol Appl Biochem. 2010;56(2):59-70. doi: 10.1042/ba20090369

 

  1. Sadavarte R, Madadkar P, Filipe CD, Ghosh R. Rapid preparative separation of monoclonal antibody charge variants using laterally-fed membrane chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1073:27-33. doi: 10.1016/j.jchromb.2017.12.003

 

  1. Muthukumar S, Muralikrishnan T, Mendhe R, Rathore AS. Economic benefits of membrane chromatography versus packed bed column purification of therapeutic proteins expressed in microbial and mammalian hosts. J Chem Technol Biotechnol. 2017;92(1):59-68. doi: 10.1002/jctb.5064

 

  1. Nadar S, Somasundaram B, Charry M, et al. Design and optimization of membrane chromatography for monoclonal antibody charge variant separation. Biotechnol Prog. 2022;38(6):e3288. doi: 10.1002/btpr.3288

 

  1. Madadkar P, Ghosh R. High-resolution protein separation using a laterally-fed membrane chromatography device. J Membr Sci. 2016;499:126-133. doi: 10.1016/j.memsci.2015.10.041

 

  1. Chen G, Wan Y, Ghosh R. Bioseparation using membrane chromatography: Innovations, and challenges. J Chromatogr A. 2025;1744:465733. doi: 10.1016/j.chroma.2025.465733

 

  1. Phillips M, Cormier J, Ferrence J, et al. Performance of a membrane adsorber for trace impurity removal in biotechnology manufacturing. J Chromatogr A. 2005;1078(1-2):74-82. doi: 10.1016/j.chroma.2005.05.007

 

  1. Osuofa J, Husson SM. Comparative evaluation of commercial protein A membranes for the rapid purification of antibodies. Membranes (Basel). 2023;13(5):511. doi: 10.3390/membranes13050511

 

  1. Lemma SM, Boi C, Carbonell RG. Nonwoven ion-exchange membranes with high protein binding capacity for bioseparations. Membranes (Basel). 2021;11(3):181.doi: 10.3390/membranes11030181

 

  1. Yang S, Braczkowski R, Chen SH, et al. Scalability of sartobind ® rapid a membrane for high productivity monoclonal antibody capture. Membranes (Basel). 2023;13(10):815. doi: 10.3390/membranes13100815

 

  1. Wang X, Wei L, Zhang S, et al. Application of integrated full‑membrane platform in antibody purification. Biotechnol Bioprocess Eng. 2025;30:139-149. doi: 10.1007/s12257-024-00162-x

 

  1. Chen X, Wang Y, Li Y. Removing half antibody byproduct by Protein A chromatography during the purification of a bispecific antibody. Protein Expr Purif. 2020;172:105635. doi: 10.1016/j.pep.2020.105635

 

  1. Yuan G, Qu M, Li Y. Effective and robust separation of half-antibody byproduct in bispecific antibody purification by Sartobind Rapid A Protein A membrane chromatography. Protein Expr Purif. 2026;237:106823. doi: 10.1016/j.pep.2025.106823
Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific