AccScience Publishing / JBM / Online First / DOI: 10.14440/jbm.0031
REVIEW

Implications of Drosophila neuroblast development for tumorigenesis

Yue Yu1,2 Hongsheng Zhu3 Minyan Li1 Xuming Ren1 Lijuan Zhang1 Yu Bai2* Huanping An1,2*
Show Less
1 Key Laboratory for Neural Precursor Cell Temporal Regulation and Diseases of Shaanxi Universities, Hanzhong Vocational and Technical College, Hanzhong, Shaanxi 723002, China
2 School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China
3 Department of General Surgery, Chenggu County Hospital, Hanzhong, Shaanxi 723000, China
Submitted: 8 April 2025 | Revised: 9 September 2025 | Accepted: 10 September 2025 | Published: 9 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Background: Tumors are characterized by excessive proliferation and the capacity for metastasis. Understanding the detailed mechanisms of tumor progression is crucial for both tumor prevention and targeted therapy. Drosophila melanogaster neural stem cells, referred to as neuroblasts (NBs), serve as an ideal model for studying tumorigenesis by recapitulating conserved cellular behaviors, signaling pathways, and regulatory mechanisms. NBs possess self-renewal capacity, enabling them to undergo multiple rounds of proliferative divisions, similar to cancer stem cells. Moreover, several signaling pathways and cytokines that regulate NB development also play a critical role in tumorigenesis. For instance, the absence of key factors in NB development, such as Brat and Numb, can lead to tumor formation. Objective: This review focuses on the mechanisms of NB development—including delamination, quiescent NB reactivation, asymmetric cell divisions, and termination—which parallel key tumor processes, such as cell epithelial-mesenchymal transition, stem cell quiescence and reactivation, uncontrolled proliferation, and cell elimination. Conclusion: We summarize recent findings on these tumor progression processes. These insights provide valuable clues for understanding tumor progression and offer potential avenues for tumor prevention and treatment.

Keywords
Neuroblasts
Neuroblast delamination
Quiescent neuroblast reactivation
Neuroblast asymmetric cell divisions
Neuroblast termination
Tumorigenesis
Funding
This work was supported by grants from the Chinese National Natural Science Foundation (32000506) and the Key Laboratory of Shaanxi Universities (20240037).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646-674. doi: 10.1016/j.cell.2011.02.013

 

  1. Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. Cell. 2016;166(1):21-45. doi: 10.1016/j.cell.2016.06.028

 

  1. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69-84. doi: 10.1038/s41580-018-0080-4

 

  1. Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP. Dynamic EMT: A multi-tool for tumor progression. EMBO J. 2021;40(18):e108647. doi: 10.15252/embj.2021108647

 

  1. Yadav AS, Pandey PR, Butti R, et al. The biology and therapeutic implications of tumor dormancy and reactivation. Front Oncol. 2018;8:72. doi: 10.3389/fonc.2018.00072

 

  1. Clarke MF, Fuller M. Stem cells and cancer: Two faces of eve. Cell. 2006;124(6):1111-1115. doi: 10.1016/j.cell.2006.03.011

 

  1. Sherr CJ. Cancer cell cycles. Science. 1996;274(5293): 1672-1677. doi: 10.1126/science.274.5293.1672

 

  1. Doe CQ, Technau GM. Identification and cell lineage of individual neural precursors in the Drosophila CNS. Trends Neurosci. 1993;16(12):510-514. doi: 10.1016/0166-2236(93)90195-r

 

  1. Bossing T, Technau GM. The fate of the CNS midline progenitors in Drosophila as revealed by a new method for single cell labelling. Development. 1994;120(7):1895-1906. doi: 10.1242/dev.120.7.1895

 

  1. Kang KH, Reichert H. Control of neural stem cell self-renewal and differentiation in Drosophila. Cell Tissue Res. 2015;359(1): 33-45. doi: 10.1007/s00441-014-1914-9

 

  1. Sousa-Nunes R, Yee LL, Gould AP. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature. 2011;471(7339):508-512. doi: 10.1038/nature09867

 

  1. Chell JM, Brand AH. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell. 2010;143(7): 1161-1173. doi: 10.1016/j.cell.2010.12.007

 

  1. Choksi SP, Southall TD, Bossing T, et al. Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev Cell. 2006;11(6):775-789. doi: 10.1016/j.devcel.2006.09.015

 

  1. Maurange C, Cheng L, Gould AP. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell. 2008;133(5):891-902. doi: 10.1016/j.cell.2008.03.034

 

  1. An H, Yu Y, Ren X, et al. Pipsqueak family genes dan/ danr antagonize nuclear Pros to prevent neural stem cell aging in Drosophila larval brains. Front Mol Neurosci. 2023;16:1160222. doi: 10.3389/fnmol.2023.1160222

 

  1. Crompton NE, Saydan N. Control of the cell cycle. J Neurooncol. 1994;22(3):255-259. doi: 10.1007/bf01052930

 

  1. Hinds PW, Dowdy SF, Eaton EN, et al. Function of a humancyclin gene as an oncogene. Proc Natl Acad Sci U S A. 1994;91(2):709-713. doi: 10.1073/pnas.91.2.709

 

  1. Tessema M, Lehmann U, Kreipe H. Cell cycle and no end. Virchows Arch. 2004;444(4):313-323. doi: 10.1007/s00428-003-0971-3

 

  1. Zeng X, Lin X, Hou SX. The Osa-containing SWI/ SNF chromatin-remodeling complex regulates stem cell commitment in the adult Drosophila intestine. Development. 2013;140(17):3532-3540. doi: 10.1242/dev.096891

 

  1. Eroglu E, Burkard TR, Jiang Y, et al. SWI/SNF complex prevents lineage reversion and induces temporal patterning in neural stem cells. Cell. 2014;156(6):1259-1273. doi: 10.1016/j.cell.2014.01.053

 

  1. Dey A, Varelas X, Guan KL. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov. 2020;19(7):480-494. doi: 10.1038/s41573-020-0070-z

 

  1. Siebel C, Lendahl U. Notch signaling in development, tissue homeostasis, and disease. Physiol Rev. 2017;97(4):1235- 1294. doi: 10.1152/physrev.00005.2017

 

  1. Fox DB, Garcia NMG, McKinney BJ, et al. NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nat Metab. 2020;2(4):318-334. doi: 10.1038/s42255-020-0191-z

 

  1. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554. doi: 10.1126/science.1096502

 

  1. Jia J, Zhang W, Wang B, Trinko R, Jiang J. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev. 2003;17(20):2514-2519. doi: 10.1101/gad.1134003

 

  1. Wu S, Huang J, Dong J, Pan D. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with Salvador and warts. Cell. 2003;114(4):445-456. doi: 10.1016/s0092-8674(03)00549-x

 

  1. Zhou B, Lin W, Long Y, et al. Notch signaling pathway: Architecture, disease, and therapeutics. Signal Transduct Target Ther. 2022;7(1):95. doi: 10.1038/s41392-022-00934-y

 

  1. Spana EP, Kopczynski C, Goodman CS, et al. Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development. 1995;121(11):3489-3494. doi: 10.1242/dev.121.11.3489

 

  1. Porter PL, Malone KE, Heagerty PJ, et al. Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat Med. 1997;3(2):222-225. doi: 10.1038/nm0297-222

 

  1. Malumbres M, Barbacid M. To cycle or not to cycle: A critical decision in cancer. Nat Rev Cancer. 2001;1(3):222-231. doi: 10.1038/35106065

 

  1. Bowman SK, Neumuller RA, Novatchkova M, et al. The Drosophila NuMA Homolog Mud regulates spindle orientation in asymmetric cell division. Dev Cell. 2006;10(6):731-742. doi: 10.1016/j.devcel.2006.05.005

 

  1. Izumi, Y, Ohta N, Hisata K, Raabe T, Matsuzaki F. Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nat Cell Biol. 2006;8(6):586-593. doi: 10.1038/ncb1409

 

  1. Lee CY, Andersen RO, Cabernard C, et al. Drosophila aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev. 2006;20(24):3464-3474. doi: 10.1101/gad.1489406

 

  1. Siller KH, Cabernard C, Doe CQ. The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nat Cell Biol. 2006;8(6):594-600. doi: 10.1038/ncb1412

 

  1. Wang H, Somers GW, Bashirullah A, et al. Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev. 2006;20(24):3453-3463. doi: 10.1101/gad.1487506

 

  1. Wang H, Ouyang Y, Somers WG, et al. Polo inhibits progenitor self-renewal and regulates Numb asymmetry by phosphorylating Pon. Nature. 2007;449(7158):96-100. doi: 10.1038/nature06056

 

  1. Cabernard C, Doe CQ. Apical/basal spindle orientation is required for neuroblast homeostasis and neuronal differentiation in Drosophila. Dev Cell. 2009;17(1):134-141. doi: 10.1016/j.devcel.2009.06.009

 

  1. Gomez-Lopez S, Lerner RG, Petritsch C. Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell Mol Life Sci. 2014;71(4):575-597. doi: 10.1007/s00018-013-1386-1

 

  1. Hartenstein V, Campos-Ortega JA. Early neurogenesis in wild-type Drosophila melanogaster. Wilehm Roux Arch Dev Biol. 1984;193(5):308-325. doi: 10.1007/BF00848159

 

  1. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871-890. doi: 10.1016/j.cell.2009.11.007

 

  1. Martin AC, Kaschube M, Wieschaus EF. Pulsed contractions of an actin-myosin network drive apical constriction. Nature. 2009;457(7228):495-499. doi: 10.1038/nature07522

 

  1. Sidor C, Roper K. Squeezing out in a “tug of war”: The role of myosin in neural stem cell delamination. J Cell Biol. 2017;216(5):1215-1218. doi: 10.1083/jcb.201702116

 

  1. Simoes S, Oh Y, Wang MFZ, Fernandez-Gonzalez R, Tepass U. Myosin II promotes the anisotropic loss of the apical domain during Drosophila neuroblast ingression. J Cell Biol. 2017;216(5):1387-1404. doi: 10.1083/jcb.201608038

 

  1. Wang F, Dumstrei K, Haag T, Hartenstein V. The role of DE-cadherin during cellularization, germ layer formation and early neurogenesis in the Drosophila embryo. Dev Biol. 2004;270(2): 350-363. doi: 10.1016/j.ydbio.2004.03.002

 

  1. Hartenstein V, Younossi-Hartenstein A, Lekven A. Delamination and division in the Drosophila neurectoderm: Spatiotemporal pattern, cytoskeletal dynamics, and common control by neurogenic and segment polarity genes. Dev Biol. 1994;165(2):480-499. doi: 10.1006/dbio.1994.1269

 

  1. Arefin B, Parvin F, Bahrampour S, Stadler CB, Thor S. Drosophila neuroblast selection is gated by notch, snail, SoxB, and EMT gene interplay. Cell Rep. 2019;29(11):3636- 3651.e3. doi: 10.1016/j.celrep.2019.11.038

 

  1. Sasaki N, Sasamura T, Ishikawa HO, et al. Polarized exocytosis and transcytosis of Notch during its apical localization in Drosophila epithelial cells. Genes Cells. 2007;12(1):89-103. doi: 10.1111/j.1365-2443.2007.01037.x

 

  1. Hatakeyama J, Wakamatsu Y, Nagafuchi A, et al. Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development. 2014;141(8):1671-1682. doi: 10.1242/dev.102988

 

  1. Loh CY, Chai JY, Tang TF, et al. The E-Cadherin and N-Cadherin Switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells. 2019;8(10):1118. doi: 10.3390/cells8101118

 

  1. Huang Z, Zhang Z, Zhou C, Liu L, Huang C. Epithelial-mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm (2020). 2022;3(2):e144. doi: 10.1002/mco2.144

 

  1. Cai Y, Chia W, Yang X. A family of snail-related zinc finger proteins regulates two distinct and parallel mechanisms that mediate Drosophila neuroblast asymmetric divisions. EMBO J. 2001;20(7):1704-1714. doi: 10.1093/emboj/20.7.1704

 

  1. Frixen UH, Behrens J, Sachs M, et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991;113(1):173-185. doi: 10.1083/jcb.113.1.173

 

  1. Vleminckx K, Vakaet L Jr., Mareel M, Fiers W, Van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991;66(1):107-119. doi: 10.1016/0092-8674(91)90143-m

 

  1. Rosso M, Majem B, Devis L, et al. E-cadherin: A determinant molecule associated with ovarian cancer progression, dissemination and aggressiveness. PLoS One. 2017;12(9):e0184439. doi: 10.1371/journal.pone.0184439

 

  1. Lewis-Tuffin LJ, Rodriguez F, Giannini C, et al. Misregulated E-cadherin expression associated with an aggressive brain tumor phenotype. PLoS One. 2010;5(10):e13665. doi: 10.1371/journal.pone.0013665

 

  1. Tanaka H, Kono E, Tran CP, et al. Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med. 2010;16(12):1414-1420. doi: 10.1038/nm.2236

 

  1. Putzke AP, Ventura AP, Bailey AM, et al. Metastatic progression of prostate cancer and e-cadherin regulation by zeb1 and SRC family kinases. Am J Pathol. 2011;179(1):400-410. doi: 10.1016/j.ajpath.2011.03.028

 

  1. Noseda M, McLean G, Niessen K, et al. Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res. 2004;94(7):910-917. doi: 10.1161/01.RES.0000124300.76171.C9

 

  1. Timmerman LA, Grego-Bessa J, Raya A, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18(1):99-115. doi: 10.1101/gad.276304

 

  1. Zavadil J, Cermak L, Soto-Nieves N, et al. Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 2004;23(5):1155-1165. doi: 10.1038/sj.emboj.7600069

 

  1. Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci U S A. 2008;105(17): 6392-6397. doi: 10.1073/pnas.0802047105

 

  1. Meisel CT, Porcheri C, Mitsiadis TA. Cancer stem cells, quo Vadis? The notch signaling pathway in tumor initiation and progression. Cells. 2020;9(8):1879. doi: 10.3390/cells9081879

 

  1. Moore G, Annett S, McClements L, Robson T. Top notch targeting strategies in cancer: A detailed overview of recent insights and current perspectives. Cells. 2020;9(6):1503. doi: 10.3390/cells9061503

 

  1. Akil A, Gutierrez-Garcia AK, Guenter R, Rose JB, Beck AW, Chen H, Ren B. Notch signaling in vascular endothelial cells, angiogenesis, and tumor progression: An update and prospective. Front Cell Dev Biol. 2021;9:642352. doi: 10.3389/fcell.2021.642352

 

  1. Edwards A, Brennan K. Notch signalling in breast development and cancer. Front Cell Dev Biol. 2021;9:692173. doi: 10.3389/fcell.2021.692173

 

  1. Misiorek JO, Przybyszewska-Podstawka A, Kalafut J, et al. Context matters: NOTCH signatures and pathway in cancer progression and metastasis. Cells. 2021;10(1):94. doi: 10.3390/cells10010094

 

  1. Tsao CM, Yan MD, Shih YL, et al. SOX1 functions as a tumor suppressor by antagonizing the WNT/beta-catenin signaling pathway in hepatocellular carcinoma. Hepatology. 2012;56(6):2277-2287. doi: 10.1002/hep.25933

 

  1. Lin YW, Tsao CM, Yu PN, Shih YL, Lin CH, Yan MD. SOX1 suppresses cell growth and invasion in cervical cancer. Gynecol Oncol. 2013;131(1):174-181. doi: 10.1016/j.ygyno.2013.07.111

 

  1. Lei XX, Liu Y, Wang JX, et al. SOX1 promotes differentiation of nasopharyngeal carcinoma cells by activating retinoid metabolic pathway. Cell Death Dis. 2020;11(5):331. doi: 10.1038/s41419-020-2513-1

 

  1. Wang D, Xiong F, Wu G, et al. MiR-155-5p suppresses SOX1 to promote proliferation of cholangiocarcinoma via RAF/ MEK/ERK pathway. Cancer Cell Int. 2021;21(1):656. doi: 10.1186/s12935-021-02374-0

 

  1. Garcia I, Aldaregia J, Marjanovic Vicentic J, et al. Oncogenic activity of SOX1 in glioblastoma. Sci Rep. 2017;7:46575. doi: 10.1038/srep46575

 

  1. Bass AJ, Watanabe H, Mermel CH, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41(11):1238- 1242. doi: 10.1038/ng.465

 

  1. Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2(2):76-83. doi: 10.1038/35000025

 

  1. Mezencev R, Matyunina LV, Jabbari N, et al. Snail-induced epithelial-to-mesenchymal transition of MCF-7 breast cancer cells: Systems analysis of molecular changes and their effect on radiation and drug sensitivity. BMC Cancer. 2016;16:236. doi: 10.1186/s12885-016-2274-5

 

  1. Wang H, Wang Z, Li Y, et al. Silencing snail reverses epithelial-mesenchymal transition and increases radiosensitivity in hypopharyngeal carcinoma. Onco Targets Ther. 2020;13:497-511. doi: 10.2147/ott.s237410

 

  1. Yastrebova MA, Khamidullina AI, Tatarskiy VV, Scherbakov AM. Snail-family proteins: Role in carcinogenesis and prospects for antitumor therapy. Acta Naturae. 2021;13(1):76-90. doi: 10.32607/actanaturae.11062

 

  1. Swaminathan V, Mythreye K, O’Brien ET, Berchuck A, Blobe GC, Superfine R. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 2011;71(15):5075-5080. doi: 10.1158/0008-5472.CAN-11-0247

 

  1. Yuan X, Sipe CW, Suzawa M, Bland ML, Siegrist SE. Dilp- 2-mediated PI3-kinase activation coordinates reactivation of quiescent neuroblasts with growth of their glial stem cell niche. PLoS Biol. 2020;18(5):e3000721. doi: 10.1371/journal.pbio.3000721

 

  1. Sood C, Justis VT, Doyle SE, Siegrist SE. Notch signaling regulates neural stem cell quiescence entry and exit in Drosophila. Development. 2022;149(4):dev200275. doi: 10.1242/dev.200275

 

  1. Ding R, Weynans K, Bossing T, Barros CS, Berger C. The Hippo signalling pathway maintains quiescence in Drosophila neural stem cells. Nat Commun. 2016;7:10510. doi: 10.1038/ncomms10510

 

  1. Dong J, Feldmann G, Huang J, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130(6):1120-1133. doi: 10.1016/j.cell.2007.07.019

 

  1. Oh H, Irvine KD. In vivo regulation of Yorkie phosphorylation and localization. Development. 2008;135(6):1081-1088. doi: 10.1242/dev.015255

 

  1. Nishioka K, Rice JC, Sarma K, et al. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell. 2002;9(6):1201-1213. doi: 10.1016/s1097-2765(02)00548-8

 

  1. Sakaguchi A, Steward R. Aberrant monomethylation of histone H4 lysine 20 activates the DNA damage checkpoint in Drosophila melanogaster. J Cell Biol. 2007;176(2):155-162. doi: 10.1083/jcb.200607178

 

  1. Huang J, Gujar MR, Deng Q, et al. Histone lysine methyltransferase Pr-set7/SETD8 promotes neural stem cell reactivation. EMBO Rep. 2021;22(4):e50994. doi: 10.15252/embr.202050994

 

  1. Santamaria D, Barrière C, Cerqueira A, et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature. 2007;448(7155):811-815. doi: 10.1038/nature06046

 

  1. Benchabane H, Xin N, Tian A, et al. Jerky/Earthbound facilitates cell-specific Wnt/Wingless signalling by modulating beta-catenin-TCF activity. EMBO J. 2011;30(8):1444-1458. doi: 10.1038/emboj.2011.67

 

  1. Ding WY, Huang J, Wang H. Waking up quiescent neural stem cells: Molecular mechanisms and implications in neurodevelopmental disorders. PLoS Genet. 2020;16(4):e1008653. doi: 10.1371/journal.pgen.1008653

 

  1. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68(15):6084-6091. doi: 10.1158/0008-5472.CAN-07-6854

 

  1. Zhang J, Roberts TM, Shivdasani RA. Targeting PI3K signaling as a therapeutic approach for colorectal cancer. Gastroenterology. 2011;141(1):50-61. doi: 10.1053/j.gastro.2011.05.010

 

  1. Cancer Genome Atlas Research N. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519-525. doi: 10.1038/nature11404

 

  1. Lui VW, Hedberg ML, Li H, et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 2013;3(7):761-769. doi: 10.1158/2159-8290.CD-13-0103

 

  1. Feng X, Zhang M, Wang B, et al. CRABP2 regulates invasion and metastasis of breast cancer through hippo pathway dependent on ER status. J Exp Clin Cancer Res. 2019;38(1):361. doi: 10.1186/s13046-019-1345-2

 

  1. Gobbi G, Donati B, Do Valle IF, et al. The Hippo pathway modulates resistance to BET proteins inhibitors in lung cancer cells. Oncogene. 2019;38(42):6801-6817. doi: 10.1038/s41388-019-0924-1

 

  1. Feng X, Lu T, Li J, et al. The tumor suppressor interferon regulatory factor 2 Binding protein 2 regulates hippo pathway in liver cancer by a feedback loop in mice. Hepatology. 2020;71(6):1988-2004. doi: 10.1002/hep.30961

 

  1. Wang X, Sun D, Tai J, Chen S, Hong S, Wang L. ZNF280A promotes proliferation and tumorigenicity via inactivating the hippo-signaling pathway in colorectal cancer. Mol Ther Oncolytics. 2019;12:204-213. doi: 10.1016/j.omto.2019.01.002

 

  1. Overholtzer M, Zhang J, Smolen GA, et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A. 2006;103(33):12405-12410. doi: 10.1073/pnas.0605579103

 

  1. Zender L, Spector MS, Xue W, et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell. 2006;125(7):1253-1267. doi: 10.1016/j.cell.2006.05.030

 

  1. Jiao S, Guan J, Chen M, et al. Targeting IRF3 as a YAP agonist therapy against gastric cancer. J Exp Med. 2018;215(2): 699-718. doi: 10.1084/jem.20171116

 

  1. Shen J, Cao B, Wang Y, et al. Hippo component YAP promotes focal adhesion and tumour aggressiveness via transcriptionally activating THBS1/FAK signalling in breast cancer. J Exp Clin Cancer Res. 2018;37(1):175. doi: 10.1186/s13046-018-0850-z

 

  1. Jin D, Guo J, Wu Y, et al. m6 A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer. 2020;19(1):40. doi: 10.1186/s12943-020-01161-1

 

  1. Levy D, Adamovich Y, Reuven N, Shaul Y. The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73. Cell Death Differ. 2007;14(4):743-751. doi: 10.1038/sj.cdd.4402063

 

  1. Yuan M, Tomlinson V, Lara R, et al. Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death Differ. 2008;15(11):1752-1759. doi: 10.1038/cdd.2008.108

 

  1. Ehsanian R, Brown M, Lu H, et al. YAP dysregulation by phosphorylation or DeltaNp63-mediated gene repression promotes proliferation, survival and migration in head and neck cancer subsets. Oncogene. 2010;29(46):6160-6171. doi: 10.1038/onc.2010.339

 

  1. Cottini F, Hideshima T, Xu C, et al. Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med. 2014;20(6):599-606. doi: 10.1038/nm.3562

 

  1. Ravindran Menon D, Luo Y, Arcaroli JJ, et al. CDK1 interacts with Sox2 and promotes tumor initiation in human melanoma. Cancer Res. 2018;78(23):6561-6574. doi: 10.1158/0008-5472.CAN-18-0330

 

  1. Wu CX, Wang XQ, Chok SH, et al. Blocking CDK1/PDK1/ beta-Catenin signaling by CDK1 inhibitor RO3306 increased the efficacy of sorafenib treatment by targeting cancer stem cells in a preclinical model of hepatocellular carcinoma. Theranostics. 2018;8(14):3737-3750. doi: 10.7150/thno.25487

 

  1. Zhang P, Kawakami H, Liu W, et al. Targeting CDK1 and MEK/ ERK overcomes apoptotic resistance in BRAF-mutant human colorectal cancer. Mol Cancer Res. 2018;16(3):378-389. doi: 10.1158/1541-7786.mcr-17-0404

 

  1. Qian JY, Gao J, Sun X, et al. KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner. Oncogene. 2019;38(33):6123-6141. doi: 10.1038/s41388-019-0861-z

 

  1. Tian Z, Cao S, Li C, et al. LncRNA PVT1 regulates growth, migration, and invasion of bladder cancer by miR-31/CDK1. J Cell Physiol. 2019;234(4):4799-4811. doi: 10.1002/jcp.27279

 

  1. Li M, He F, Zhang Z, et al. CDK1 serves as a potential prognostic biomarker and target for lung cancer. J Int Med Res. 2020;48(2):300060519897508. doi: 10.1177/0300060519897508

 

  1. Chen H, Hu K, Xie Y, et al. CDK1 promotes epithelial-mesenchymal transition and migration of head and neck squamous carcinoma cells by repressing Δnp63alpha-mediated transcriptional regulation. Int J Mol Sci. 2022;23(13):7385. doi: 10.3390/ijms23137385

 

  1. Ohba S, Tang Y, Johannessen TA, Mukherjee J. PKM2 interacts with the Cdk1-CyclinB complex to facilitate cell cycle progression in Gliomas. Front Oncol. 2022;12:844861. doi: 10.3389/fonc.2022.844861

 

  1. Li Y, Sun L, Zhang Y, et al. The histone modifications governing TFF1 transcription mediated by estrogen receptor. J Biol Chem. 2011;286(16):13925-13936. doi: 10.1074/jbc.M111.223198

 

  1. Li Z, Nie F, Wang S, Li L. Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation. Proc Natl Acad Sci U S A. 2011;108(8):3116-3123. doi: 10.1073/pnas.1009353108

 

  1. Pascual J, Turner NC. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann Oncol. 2019;30(7): 1051-1060. doi: 10.1093/annonc/mdz133

 

  1. Calvet L, Dos-Santos O, Spanakis E, et al. YAP1 is essential for malignant mesothelioma tumor maintenance. BMC Cancer. 2022;22(1):639. doi: 10.1186/s12885-022-09686-y

 

  1. Qadir J, Li F, Yang BB. Circular RNAs modulate Hippo-YAP signaling: Functional mechanisms in cancer. Theranostics. 2022;12(9):4269-4287. doi: 10.7150/thno.71708

 

  1. Otsuki L, Brand AH. Cell cycle heterogeneity directs the timing of neural stem cell activation from quiescence. Science. 2018;360(6384):99-102. doi: 10.1126/science.aan8795

 

  1. Knoblich JA. Mechanisms of asymmetric stem cell division. Cell. 2008;132(4):583-597. doi: 10.1016/j.cell.2008.02.007

 

  1. De Torres-Jurado A, Manzanero-Ortiz S, Carmena A. Glial-secreted Netrins regulate Robo1/Rac1-Cdc42 signaling threshold levels during Drosophila asymmetric neural stem/ progenitor cell division. Curr Biol. 2022;32(10):2174-2188.e3. doi: 10.1016/j.cub.2022.04.001

 

  1. Kraut R, Campos-Ortega JA. Inscuteable, a neural precursor gene of Drosophila, encodes a candidate for a Cytoskeleton adaptor protein. Dev Biol. 1996;174(1):65-81. doi: 10.1006/dbio.1996.0052

 

  1. Hirata J, Nakagoshi H, Nabeshima Y, et al. Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature. 1995;377(6550):627-630. doi: 10.1038/377627a0

 

  1. Knoblich JA, Jan LY, Jan YN. Asymmetric segregation of numb and Prospero during cell division. Nature. 1995;377(6550):624-627. doi: 10.1038/377624a0

 

  1. Spana EP, Doe CQ. The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development. 1995;121(10):3187-3195. doi: 10.1242/dev.121.10.3187

 

  1. Broadus J, Fuerstenberg S, Doe CQ. Staufen-dependent localization of prospero mRNA contributes to neuroblast daughter-cell fate. Nature. 1998;391(6669):792-795. doi: 10.1038/35861

 

  1. Betschinger J, Mechtler K, Knoblich JA. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell. 2006;124(6):1241- 1253. doi: 10.1016/j.cell.2006.01.038

 

  1. Arama E, Dickman D, Kimchie Z, Shearn A, Lev Z. Mutations in the beta-propeller domain of the Drosophila brain tumor (brat) protein induce neoplasm in the larval brain. Oncogene. 2000;19(33):3706-3716. doi: 10.1038/sj.onc.1203706

 

  1. Bello B, Reichert H, Hirth F. The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development. 2006;133(14): 2639-2648. doi: 10.1242/dev.02429

 

  1. Lee CY, Wilkinson BD, Siegrist SE, Wharton RP, Doe CQ. Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev Cell. 2006;10(4):441-449. doi: 10.1016/j.devcel.2006.01.017

 

  1. Carmena A. Compromising asymmetric stem cell division in Drosophila central brain: Revisiting the connections with tumorigenesis. Fly (Austin). 2018;12(1):71-80. doi: 10.1080/19336934.2017.1416277

 

  1. Chen G, Kong J, Tucker-Burden C, et al. Human Brat ortholog TRIM3 is a tumor suppressor that regulates asymmetric cell division in glioblastoma. Cancer Res. 2014;74(16):4536-4548. doi: 10.1158/0008-5472.can-13-3703

 

  1. Mukherjee S, Tucker-Burden C, Zhang C, et al. Drosophila brat and human ortholog TRIM3 maintain stem cell equilibrium and suppress brain tumorigenesis by attenuating notch nuclear transport. Cancer Res. 2016;76(8):2443-2452. doi: 10.1158/0008-5472.CAN-15-2299

 

  1. Guo M, Jan LY, Jan YN. Control of daughter cell fates during asymmetric division: Interaction of Numb and Notch. Neuron. 1996;17(1):27-41. doi: 10.1016/s0896-6273(00)80278-0

 

  1. Bhat KM. Notch signaling acts before cell division to promote asymmetric cleavage and cell fate of neural precursor cells. Sci Signal. 2014;7(348):ra101. doi: 10.1126/scisignal.2005317

 

  1. Choi HY, Seok J, Kang GH, Lim KM, Cho SG. The role of NUMB/NUMB isoforms in cancer stem cells. BMB Rep. 2021;54(7):335-343. doi: 10.5483/BMBRep.2021.54.7.048

 

  1. Ke S, Lu S, Wang C, et al. Comprehensive analysis of the prognostic value and functions of prefoldins in hepatocellular carcinoma. Front Mol Biosci. 2022;9:957001. doi: 10.3389/fmolb.2022.957001

 

  1. Woods DF, Bryant PJ. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell. 1991;66(3):451-464. doi: 10.1016/0092-8674(81)90009-x

 

  1. Kraut R, Chia W, Jan LY, Jan YN, Knoblich JA. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature. 1996;383(6595):50-55. doi: 10.1038/383050a0

 

  1. Kuchinke U, Grawe F, Knust E. Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr Biol. 1998;8(25):1357-1365. doi: 10.1016/s0960-9822(98)00016-5

 

  1. Wodarz A, Ramrath A, Kuchinke U, Knust E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature. 1999;402(6761):544-547. doi: 10.1038/990128

 

  1. Ohshiro T,Yagami T, Zhang C, Matsuzaki F. Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature. 2000;408(6812):593-596. doi: 10.1038/35046087

 

  1. Petronczki M, Knoblich JA. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nat Cell Biol. 2001;3(1):43-49. doi: 10.1038/35050550

 

  1. Albertson R, Doe CQ. Dlg, Scrib and Lgl regulate neuroblast cell size and mitotic spindle asymmetry. Nat Cell Biol. 2003;5(2):166-170. doi: 10.1038/ncb922

 

  1. Wang H, Cai Y, Chia W, Yang X. Drosophila homologs of mammalian TNF/TNFR-related molecules regulate segregation of Miranda/Prospero in neuroblasts. EMBO J. 2006;25(24):5783-5793. doi: 10.1038/sj.emboj.7601461

 

  1. Wang L, Zhang H, Hasim A, et al. Partition-defective 3 (PARD3) regulates proliferation, apoptosis, migration, and invasion in esophageal squamous cell carcinoma cells. Med Sci Monit. 2017;23:2382-2390. doi: 10.12659/msm.903380

 

  1. Marques E, Englund JI, Tervonen TA, et al. Par6G suppresses cell proliferation and is targeted by loss-of-function mutations in multiple cancers. Oncogene. 2016;35(11):1386-1398. doi: 10.1038/onc.2015.196

 

  1. Sarkar S, Bristow CA, Dey P, et al. PRKCI promotes immune suppression in ovarian cancer. Genes Dev. 2017;31(11): 1109-1121. doi: 10.1101/gad.296640.117

 

  1. Wu Z, Huang C, Li R, Li H, Lu H, Lin Z. PRKCI mediates radiosensitivity via the hedgehog/gli1 pathway in cervical Cancer. Front Oncol. 2022;12:887139. doi: 10.3389/fonc.2022.887139

 

  1. Liu Y, Yin N, Wang X, et al. Chromosome 3q26 gain is an early event driving coordinated overexpression of the PRKCI, SOX2, and ECT2 Oncogenes in lung squamous cell carcinoma. Cell Rep. 2020;30(3):771-782.e6. doi: 10.1016/j.celrep.2019.12.071

 

  1. Zhaoran S, Weidong J. INSC is a prognosis-associated biomarker involved in tumor immune infiltration in colon adenocarcinoma. Biomed Res Int. 2022;2022:5794150. doi: 10.1155/2022/5794150

 

  1. Culurgioni S, Mari S, Bonetti P, et al. Insc: LGN tetramers promote asymmetric divisions of mammary stem cells. Nat Commun. 2018;9(1):1025. doi: 10.1038/s41467-018-03343-4

 

  1. Sun J, Huang J, Lan J, et al. Overexpression of CENPF correlates with poor prognosis and tumor bone metastasis in breast cancer. Cancer Cell Int. 2019;19:264. doi: 10.1186/s12935-019-0986-8

 

  1. Yu B, Chen L, Zhang W, et al. TOP2A and CENPF are synergistic master regulators activated in cervical cancer. BMC Med Genomics. 2020;13(1):145. doi: 10.1186/s12920-020-00800-2

 

  1. Huang Y, Chen X, Wang L, Wang T, Tang X, Su X. Centromere protein F (CENPF) serves as a potential prognostic biomarker and target for human hepatocellular carcinoma. J Cancer. 2021;12(10):2933-2951. doi: 10.7150/jca.52187

 

  1. Li MX, Zhang MY, Dong HH, et al. Overexpression of CENPF is associated with progression and poor prognosis of lung adenocarcinoma. Int J Med Sci. 2021;18(2):494-504. doi: 10.7150/ijms.49041

 

  1. Huang YG, Li D, Wang L, Su XM, Tang XB. CENPF/CDK1 signaling pathway enhances the progression of adrenocortical carcinoma by regulating the G2/M-phase cell cycle. J Transl Med. 2022;20(1):78. doi: 10.1186/s12967-022-03277-y

 

  1. Deng M, Liu B, Zhang Z, et al. Knockdown of G-protein-signaling modulator 2 promotes metastasis of non-small-cell lung cancer by inducing the expression of Snail. Cancer Sci. 2020;111(9):3210-3221. doi: 10.1111/cas.14519

 

  1. Yang D, Ji F, Li Y, et al. GPSM2 serves as an independent prognostic biomarker for liver cancer survival. Technol Cancer Res Treat. 2020;19:1533033820945817. doi: 10.1177/1533033820945817

 

  1. Zhou X, Dang S, Jiang H, et al. Identification of G-protein signaling modulator 2 as a diagnostic and prognostic biomarker of pancreatic adenocarcinoma: An exploration of its regulatory mechanisms. J Gastrointest Oncol. 2021;12(3):1164-1179. doi: 10.21037/jgo-21-224

 

  1. Stewart M, Murphy C, Fristrom JW. The recovery and preliminary characterization of X chromosome mutants affecting imaginal discs of Drosophila melanogaster. Dev Biol. 1972;27(1):71-83. doi: 10.1016/0012-1606(72)90113-3

 

  1. Gateff E, Schneiderman HA. Developmental capacities of benign and malignant neoplasms of Drosophila. Wilhelm Roux Arch Entwickl Mech Org. 1974;176(1):23-65. doi: 10.1007/BF00577830

 

  1. Gateff E. Malignant neoplasms of genetic origin in Drosophila melanogaster. Science. 1978;200(4349):1448-1459. doi: 10.1126/science.96525

 

  1. Bilder D, Perrimon N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature. 2000;403(6770):676-680. doi: 10.1038/35001108

 

  1. Pearson HB, Perez-Mancera PA, Dow LE, et al. SCRIB expression is deregulated in human prostate cancer, and its deficiency in mice promotes prostate neoplasia. J Clin Invest. 2011;121(11):4257-4267. doi: 10.1172/JCI58509

 

  1. Anastas JN, Biechele TL, Robitaille M, et al. A protein complex of SCRIB, NOS1AP and VANGL1 regulates cell polarity and migration, and is associated with breast cancer progression. Oncogene. 2012;31(32):3696-3708. doi: 10.1038/onc.2011.528

 

  1. Stephens R, Lim K, Portela M, Kvansakul M, Humbert PO, Richardson HE. The scribble cell polarity module in the regulation of cell signaling in tissue development and tumorigenesis. J Mol Biol. 2018;430(19):3585-3612. doi: 10.1016/j.jmb.2018.01.011

 

  1. Carmena A. The case of the scribble polarity module in asymmetric neuroblast division in development and tumorigenesis. Int J Mol Sci. 2020;21(8):2865. doi: 10.3390/ijms21082865

 

  1. Vainberg IE, Lewis SA, Rommelaere H, et al. Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell. 1998;93(5):863-873. doi: 10.1016/s0092-8674(00)81446-4

 

  1. Zhang Y, Rai M, Wang C, Gonzalez C, Wang H. Prefoldin and Pins synergistically regulate asymmetric division and suppress dedifferentiation. Sci Rep. 2016;6:23735. doi: 10.1038/srep23735

 

  1. Herranz-Montoya I, Park S, Djouder N. A comprehensive analysis of prefoldins and their implication in cancer. iScience. 2021;24(11):103273. doi: 10.1016/j.isci.2021.103273

 

  1. Wang P, Zhao J, Yang X, et al. PFDN1, an indicator for colorectal cancer prognosis, enhances tumor cell proliferation and motility through cytoskeletal reorganization. Med Oncol. 2015;32(12):264. doi: 10.1007/s12032-015-0710-z

 

  1. Wang D, Shi W, Tang Y, et al. Prefoldin 1 promotes EMT and lung cancer progression by suppressing cyclin A expression. Oncogene. 2017;36(7):885-898. doi: 10.1038/onc.2016.257

 

  1. Zhou C, Guo Z, Xu L, et al. PFND1 predicts poor prognosis of gastric cancer and promotes cell metastasis by activating the Wnt/beta-catenin pathway. Onco Targets Ther. 2020;13: 3177-3186 doi: 10.2147/ott.s236929

 

  1. Riester M, Werner L, Bellmunt J, et al. Integrative analysis of 1q23.3 copy-number gain in metastatic urothelial carcinoma. Clin Cancer Res. 2014;20(7):1873-1883. doi: 10.1158/1078-0432.ccr-13-0759

 

  1. Yesseyeva G, Aikemu B, Hong H, et al. Prefoldin subunits (PFDN1-6) serve as poor prognostic markers in gastric cancer. Biosci Rep. 2020;40(2):BSR20192712. doi: 10.1042/bsr20192712

 

  1. Spana EP, Doe CQ. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron. 1996;17(1):21-26. doi: 10.1016/s0896-6273(00)80277-9

 

  1. Buescher M, Yeo SL, Udolph G, et al. Binary sibling neuronal cell fate decisions in the Drosophila embryonic central nervous system are nonstochastic and require inscuteable-mediated asymmetry of ganglion mother cells. Genes Dev. 1998;12(12):1858-1870. doi: 10.1101/gad.12.12.1858

 

  1. An H, Ge W, Xi Y, et al. Inscuteable maintains type I neuroblast lineage identity via Numb/Notch signaling in the Drosophila larval brain. J Genet Genomics. 2017;44(3):151-162. doi: 10.1016/j.jgg.2017.02.005

 

  1. Wang NJ, Sanborn Z, Arnett KL, et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci U S A. 2011;108(43):17761- 17766. doi: 10.1073/pnas.1114669108

 

  1. Gao YB, Chen ZL, Li JG, et al. Genetic landscape of esophageal squamous cell carcinoma. Nat Genet. 2014;46(10):1097- 1102. doi: 10.1038/ng.3076

 

  1. Rampias T, Vgenopoulou P, Avgeris M, et al. A new tumor suppressor role for the Notch pathway in bladder cancer. Nat Med. 2014;20(10):1199-1205. doi: 10.1038/nm.3678

 

  1. Carmena A, Makarova A, Speicher S. The Rap1-Rgl-Ral signaling network regulates neuroblast cortical polarity and spindle orientation. J Cell Biol. 2011;195(4):553-562. doi: 10.1083/jcb.201108112

 

  1. Li Q, Xu A, Chu Y, et al. Rap1A promotes esophageal squamous cell carcinoma metastasis through the AKT signaling pathway. Oncol Rep. 2019;42(5):1815-1824. doi: 10.3892/or.2019.7309

 

  1. Keder A, Rives-Quinto N, Aerne BL, et al. The hippo pathway core cassette regulates asymmetric cell division. Curr Biol. 2015;25(21):2739-2750. doi: 10.1016/j.cub.2015.08.064

 

  1. Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 1995;9(5):534-546. doi: 10.1101/gad.9.5.534

 

  1. Shen Z, Pan Y, Chen P, Jiang B, Fang X, Jiang Y. LATS1 exerts tumor suppressor functions via targeting Gli1 in colorectal cancer. J Cancer. 2021;12(24):7311-7319. doi: 10.7150/jca.62211

 

  1. Marlow R, Strickland P, Lee JS, et al. SLITs suppress tumor growth in vivo by silencing Sdf1/Cxcr4 within breast epithelium. Cancer Res. 2008;68(19):7819-7827. doi: 10.1158/0008-5472.CAN-08-1357

 

  1. Zhang C, Guo H, Li B, et al. Effects of Slit3 silencing on the invasive ability of lung carcinoma A549 cells. Oncol Rep. 2015;34(2):952-960. doi: 10.3892/or.2015.4031

 

  1. Ng L, Chow AKM, Man JHW, et al. Suppression of Slit3 induces tumor proliferation and chemoresistance in hepatocellular carcinoma through activation of GSK3beta/ beta-catenin pathway. BMC Cancer. 2018;18(1):621. doi: 10.1186/s12885-018-4326-5

 

  1. Alebrahim D, Nayak M, Ward A, et al. Mapping semaphorins and netrins in the pathogenesis of human thoracic aortic aneurysms. Int J Mol Sci. 2019;20(9):2100. doi: 10.3390/ijms20092100

 

  1. Jacob J, Maurange C, Gould AP. Temporal control of neuronal diversity: Common regulatory principles in insects and vertebrates? Development. 2008;135(21):3481-3489. doi: 10.1242/dev.016931

 

  1. Brody T, Odenwald WF. Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev Biol. 2000;226(1):34-44. doi: 10.1006/dbio.2000.9829

 

  1. Isshiki T, Pearson B, Holbrook S, Doe CQ. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell. 2001;106(4):511-521. doi: 10.1016/s0092-8674(01)00465-2

 

  1. Baumgardt M, Karlsson D, Terriente J, Díaz-Benjumea FJ, Thor S. Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell. 2009;139(5): 969-982. doi: 10.1016/j.cell.2009.10.032

 

  1. Stanojevic D, Hoey T, Levine M. Sequence-specific DNA-binding activities of the gap proteins encoded by hunchback and Kruppel in Drosophila. Nature. 1989;341(6240):331-335. doi: 10.1038/341331a0

 

  1. Mellerick DM, Kassis JA, Zhang SD, Zhang SD, Odenwald WF. Castor encodes a novel zinc finger protein required for the development of a subset of CNS neurons in Drosophila. Neuron. 1992;9(5):789-803. doi: 10.1016/0896-6273(92)90234-5

 

  1. Yang X, Yeo S, Dick T, et al. The role of a Drosophila POU homeo domain gene in the specification of neural precursor cell identity in the developing embryonic central nervous system. Genes Dev. 1993;7(3):504-516. doi: 10.1101/gad.7.3.504

 

  1. Cenci C, Gould AP. Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts. Development. 2005;132(17):3835-3845. doi: 10.1242/dev.01932

 

  1. Okano H, Temple S. Cell types to order: Temporal specification of CNS stem cells. Curr Opin Neurobiol. 2009;19(2):112-119. doi: 10.1016/j.conb.2009.04.003

 

  1. Emery IF, Bedian V, Guild GM. Differential expression of broad-complex transcription factors may forecast tissue-specific developmental fates during Drosophila metamorphosis. Development. 1994;120(11):3275-3287. doi: 10.1242/dev.120.11.3275

 

  1. Zhu S, Lin S, Kao CF, Awasaki T, Chiang AS, Lee T. Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity. Cell. 2006;127(2):409-422. doi: 10.1016/j.cell.2006.08.045

 

  1. Dillon NR, Manning L, Hirono K, Doe CQ. Seven-up acts in neuroblasts to specify adult central complex neuron identity and initiate neuroblast decommissioning. Development. 2024;151(3):dev202504. doi: 10.1242/dev.202504

 

  1. Bayraktar OA, Doe CQ. Combinatorial temporal patterning in progenitors expands neural diversity. Nature. 2013;498(7455):449-455. doi: 10.1038/nature12266

 

  1. Ci W, Polo JM, Melnick A. B-cell lymphoma 6 and the molecular pathogenesis of diffuse large B-cell lymphoma. Curr Opin Hematol. 2008;15(4):381-390. doi: 10.1097/MOH.0b013e328302c7df

 

  1. Ye BH, Lista F, Lo Coco F, et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science. 1993;262(5134):747-750. doi: 10.1126/science.8235596

 

  1. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503-511. doi: 10.1038/35000501

 

  1. Duan S, Cermak L, Pagan JK, et al. FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature. 2012;481(7379):90-93. doi: 10.1038/nature10688

 

  1. Bos R, Van Diest PJ, Van der Groep P, et al. Protein expression of B-cell lymphoma gene 6 (BCL-6) in invasive breast cancer is associated with cyclin D1 and hypoxia-inducible factor- 1alpha (HIF-1alpha). Oncogene. 2003;22(55):8948-8951. doi: 10.1038/sj.onc.1206995

 

  1. Logarajah S, Hunter P, Kraman M, et al. BCL-6 is expressed in breast cancer and prevents mammary epithelial differentiation. Oncogene. 2003;22(36):5572-5578. doi: 10.1038/sj.onc.1206689

 

  1. Duy C, Hurtz C, Shojaee S, et al. BCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR-ABL1 kinase inhibition. Nature. 2011;473(7347):384-388. doi: 10.1038/nature09883

 

  1. Hurtz C, Hatzi K, Cerchietti L, et al. BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia. J Exp Med. 2011;208(11):2163-2174. doi: 10.1084/jem.20110304

 

  1. Sato T, Tran TH, Peck AR, et al. Prolactin suppresses a progestin-induced CK5-positive cell population in luminal breast cancer through inhibition of progestin-driven BCL6 expression. Oncogene. 2014;33(17):2215-2224. doi: 10.1038/onc.2013.172

 

  1. Kawabata KC, Zong H, Meydan C, et al. BCL6 maintains survival and self-renewal of primary human acute myeloid leukemia cells. Blood. 2021;137(6):812-825. doi: 10.1182/blood.2019001745

 

  1. Li K, Liu Y, Ding Y, et al. BCL6 is regulated by the MAPK/ ELK1 axis and promotes KRAS-driven lung cancer. J Clin Invest. 2022;132(22):e161308. doi: 10.1172/JCI161308

 

  1. Walker SR Liu S, Xiang M, et al. The transcriptional modulator BCL6 as a molecular target for breast cancer therapy. Oncogene. 2015;34(9):1073-1082. doi: 10.1038/onc.2014.61

 

  1. Cardenas MG, Oswald E, Yu W, Xue F, MacKerell AD Jr., Melnick AM. The expanding role of the BCL6 oncoprotein as a cancer therapeutic target. Clin Cancer Res. 2017;23(4):885-893. doi: 10.1158/1078-0432.CCR-16-2071

 

  1. Hurtz C, Chan LN, Geng H, et al. Rationale for targeting BCL6 in MLL-rearranged acute lymphoblastic leukemia. Genes Dev. 2019;33(17-18):1265-1279. doi: 10.1101/gad.327593.119

 

  1. Huang YH, Klingbeil O, He XY, et al. POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes Dev. 2018;32(13-14):915-928. doi: 10.1101/gad.314815.118

 

  1. Bintz J, Abuelafia AM, Gerbe F, et al. Expression of POU2F3 transcription factor control inflammation, immunological recruitment and metastasis of pancreatic cancer in mice. Biology (Basel). 2020;9(10):341. doi: 10.3390/biology9100341

 

  1. Liu Z, Zhang X, Lei H, et al. CASZ1 induces skeletal muscle and rhabdomyosarcoma differentiation through a feed-forward loop with MYOD and MYOG. Nat Commun. 2020;11(1):911. doi: 10.1038/s41467-020-14684-4

 

  1. Liu Z, Zhang X, Xu M, et al. Loss of CASZ1 tumor suppressor linked to oncogenic subversion of neuroblastoma core regulatory circuitry. Cell Death Dis. 2022;13(10):871. doi: 10.1038/s41419-022-05314-6

 

  1. Wu YY, Chang CL, Chuang YJ, et al. CASZ1 is a novel promoter of metastasis in ovarian cancer. Am J Cancer Res. 2016;6(6):1253-1270.

 

  1. Yuan M, Wang J, Fang F. Grainyhead-Like genes family may act as novel biomarkers in colon cancer. Onco Targets Ther. 2020;13:3237-3245. doi: 10.2147/OTT.S242763

 

  1. He Y, Gan M, Wang Y, et al. EGFR-ERK induced activation of GRHL1 promotes cell cycle progression by upregulating cell cycle related genes in lung cancer. Cell Death Dis. 2021;12(5):430. doi: 10.1038/s41419-021-03721-9

 

  1. Li M, Li Z, Guan X, et al. Suppressor gene GRHL1 is associated with prognosis in patients with oesophageal squamous cell carcinoma. Oncol Lett. 2019;17(5):4313-4320. doi: 10.3892/ol.2019.10072

 

  1. Erdos E, Balint BL. NR2F2 orphan nuclear receptor is involved in estrogen receptor alpha-mediated transcriptional regulation in luminal a breast cancer cells. Int J Mol Sci. 2020;21(6):1910. doi: 10.3390/ijms21061910

 

  1. Le Dily F, Metivier R, Gueguen MM, et al. COUP-TFI modulates estrogen signaling and influences proliferation, survival and migration of breast cancer cells. Breast Cancer Res Treat. 2008;110(1):69-83. doi: 10.1007/s10549-007-9693-6

 

  1. Zhang C, Han Y, Huang H, et al. High NR2F2 transcript level is associated with increased survival and its expression inhibits TGF-beta-dependent epithelial-mesenchymal transition in breast cancer. Breast Cancer Res Treat. 2014;147(2):265-281. doi: 10.1007/s10549-014-3095-3

 

  1. Xia B, Hou L, Kang H, et al. NR2F2 plays a major role in insulin-induced epithelial-mesenchymal transition in breast cancer cells. BMC Cancer. 2020;20(1):626. doi: 10.1186/s12885-020-07107-6

 

  1. Lavallee VP, Gendron P, Lemieux S, et al. EVI1-rearranged acute myeloid leukemias are characterized by distinct molecular alterations. Blood. 2015;125(1):140-143. doi: 10.1182/blood-2014-07-591529

 

  1. Hou A, Zhao L, Zhao F, et al. Expression of MECOM is associated with unfavorable prognosis in glioblastoma multiforme. Onco Targets Ther. 2016;9:315-320. doi: 10.2147/OTT.S95831

 

  1. Bleu M, Mermet-Meillon F, Apfel V, et al. PAX8 and MECOM are interaction partners driving ovarian cancer. Nat Commun. 2021;12(1):2442. doi: 10.1038/s41467-021-22708-w

 

  1. Elsherif M, Hammad M, Hafez H, et al. MECOM gene overexpression in pediatric patients with acute myeloid leukemia. Acta Oncol. 2022;61(4):516-522. doi: 10.1080/0284186X.2022.2025611

 

  1. Li M, Ren H, Zhang Y, et al. MECOM/PRDM3 and PRDM16 Serve as prognostic-related biomarkers and are correlated with immune cell infiltration in lung adenocarcinoma. Front Oncol. 2022;12:772686. doi: 10.3389/fonc.2022.772686

 

  1. Wang Z, Chen K, Jia Y, et al. Dual ARID1A/ARID1B loss leads to rapid carcinogenesis and disruptive redistribution of BAF complexes. Nat Cancer. 2020;1(9):909-922. doi: 10.1038/s43018-020-00109-0

 

  1. Ding H, Quan H, Yan W, Han J. Silencing of SOX12 by shRNA suppresses migration, invasion and proliferation of breast cancer cells. Biosci Rep. 2016;36(5):e00389. doi: 10.1042/bsr20160053

 

  1. Zou S, Wang C, Liu J, et al. Sox12 is a cancer stem-like cell marker in hepatocellular carcinoma. Mol Cells. 2017;40(11):847-854. doi: 10.14348/molcells.2017.0129

 

  1. Du F, Chen J, Liu H, et al. SOX12 promotes colorectal cancer cell proliferation and metastasis by regulating asparagine synthesis. Cell Death Dis. 2019;10(3):239. doi: 10.1038/s41419-019-1481-9

 

  1. Guo B, Xiao C, Liu Y, et al. miR-744-5p inhibits multiple myeloma proliferation, epithelial mesenchymal transformation and glycolysis by targeting sox12/wnt/beta-catenin signaling. Onco Targets Ther. 2021;14:1161-1172. doi: 10.2147/ott.s270636

 

  1. Su Z, Bao W, Yang G, Liu J, Zhao B. SOX12 promotes thyroid cancer cell proliferation and invasion by regulating the expression of POU2F1 and POU3F1. Yonsei Med J. 2022;63(6):591-600. doi: 10.3349/ymj.2022.63.6.591

 

  1. Li C, Zhu M, Zhu J, et al. SOX12 contributes to the activation of the JAK2/STAT3 pathway and malignant transformation of esophageal squamous cell carcinoma. Oncol Rep. 2021;45(1):129-138. doi: 10.3892/or.2020.7863

 

  1. Zhang W, YuF, Weng J, et al. SOX12 Promotes stem cell-like phenotypes and osteosarcoma tumor growth by upregulating JAGGED1. Stem Cells Int. 2021;2021:9941733. doi: 10.1155/2021/9941733

 

  1. Muratovska A, Zhou C, He S, et al. Paired-Box genes are frequently expressed in cancer and often required for cancer cell survival. Oncogene. 2003;22(39):7989-7997. doi: 10.1038/sj.onc.1206766

 

  1. Zhong X, Li Y, Peng F, et al. Identification of tumorigenic retinal stem-like cells in human solid retinoblastomas. Int J Cancer. 2007;121(10):2125-2131. doi: 10.1002/ijc.22880

 

  1. Mascarenhas JB, Young KP, Littlejohn EL, et al. PAX6 is expressed in pancreatic cancer and actively participates in cancer progression through activation of the MET tyrosine kinase receptor gene. J Biol Chem. 2009;284(40):27524-27532. doi: 10.1074/jbc.M109.047209

 

  1. Li Y, Li Y, Liu Y, Xie P, Li F, Li G. PAX6, a novel target of microRNA-7, promotes cellular proliferation and invasion in human colorectal cancer cells. Dig Dis Sci. 2014;59(3):598-606. doi: 10.1007/s10620-013-2929-x

 

  1. Zong X, Yang H, Yu Y, et al. Possible role of Pax-6 in promoting breast cancer cell proliferation and tumorigenesis. BMB Rep. 2011;44(9):595-600. doi: 10.5483/bmbrep.2011.44.9.595

 

  1. Kiselev Y, Andersen S, Johannessen C, et al. Transcription factor PAX6 as a novel prognostic factor and putative tumour suppressor in non-small cell lung cancer. Sci Rep. 2018;8(1):5059. doi: 10.1038/s41598-018-23417-z

 

  1. Wu DM, Zhang T, Liu YB, et al. The PAX6-ZEB2 axis promotes metastasis and cisplatin resistance in non-small cell lung cancer through PI3K/AKT signaling. Cell Death Dis. 2019;10(5):349. doi: 10.1038/s41419-019-1591-4

 

  1. Zhou YH, Wu X, Tan F, et al. PAX6 suppresses growth of human glioblastoma cells. J Neurooncol. 2005;71(3):223-229. doi: 10.1007/s11060-004-1720-4

 

  1. Shyr CR, Tsai MY, Yeh S, et al. Tumor suppressor PAX6 functions as androgen receptor co-repressor to inhibit prostate cancer growth. Prostate. 2010;70(2):190-199. doi: 10.1002/pros.21052

 

  1. Huang BS, Luo QZ, Han Y, Li XB, Cao LJ, Wu LX. microRNA-223 promotes the growth and invasion of glioblastoma cells by targeting tumor suppressor PAX6. Oncol Rep. 2013;30(5):2263-2269. doi: 10.3892/or.2013.2683

 

  1. Narbonne-Reveau K, Lanet E, Dillard C, et al. Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila. Elife. 2016;5:e13463. doi: 10.7554/eLife.13463

 

  1. Maurange C. Temporal patterning in neural progenitors: From Drosophila development to childhood cancers. Dis Model Mech. 2020;13(7):dmm044883. doi: 10.1242/dmm.044883

 

  1. Genovese S, Clement R, Gaultier C, et al. Coopted temporal patterning governs cellular hierarchy, heterogeneity and metabolism in Drosophila neuroblast tumors. Elife. 2019;8:e50375. doi: 10.7554/eLife.50375

 

  1. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev. 1998;12(15):2245-2262. doi: 10.1101/gad.12.15.2245

 

  1. Leone G, DeGregori J, Yan Z, et al. E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev. 1998;12(14):2120-2130. doi: 10.1101/gad.12.14.2120

 

  1. Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 1999;98(6):859-869. doi: 10.1016/s0092-8674(00)81519-6

 

  1. Lanet E, Gould AP, Maurange C. Protection of neuronal diversity at the expense of neuronal numbers during nutrient restriction in the Drosophila visual system. Cell Rep. 2013;3(3):587-594. doi: 10.1016/j.celrep.2013.02.006

 

  1. Lasko P. The drosophila melanogaster genome: Translation factors and RNA binding proteins. J Cell Biol. 2000;150(2):F51-F56. doi: 10.1083/jcb.150.2.f51

 

  1. Liu Z, Yang CP, Sugino K, et al. Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates. Science. 2015;350(6258):317-320. doi: 10.1126/science.aad1886

 

  1. Guan W, Nie Z, Laurencon A, et al. The role of Imp and Syp RNA-binding proteins in precise neuronal elimination by apoptosis through the regulation of transcription factors. Elife. 2024;12:RP91634. doi: 10.7554/eLife.91634

 

  1. Ray A, Zhu H, Ding A, Li X. Transcriptional and epigenetic regulation of temporal patterning in neural progenitors. Dev Biol. 2022;481:116-128. doi: 10.1016/j.ydbio.2021.10.006

 

  1. Bley N, Schott A, Muller S, et al. IGF2BP1 is a targetable SRC/MAPK-dependent driver of invasive growth in ovarian cancer. RNA Biol. 2021;18(3):391-403. doi: 10.1080/15476286.2020.1812894

 

  1. Lin XT, Yu HQ, Fang L, et al. Elevated FBXO45 promotes liver tumorigenesis through enhancing IGF2BP1 ubiquitination and subsequent PLK1 upregulation. Elife. 2021;10:e70715. doi: 10.7554/eLife.70715

 

  1. Sperling F, Misiak D, Huttelmaier S, et al. IGF2BP1 promotes proliferation of neuroendocrine neoplasms by post-transcriptional enhancement of EZH2. Cancers (Basel). 2022;14(9):2121. doi: 10.3390/cancers14092121

 

  1. Chen EB, Qin X, Peng K, et al. HnRNPR-CCNB1/CENPF axis contributes to gastric cancer proliferation and metastasis. Aging (Albany NY). 2019;11(18):7473-7491. doi: 10.18632/aging.102254

 

  1. Li Y, Wang H, Wan J, Ma Q, Qi Y, Gu Z. The hnRNPK/ A1/R/U complex regulates gene transcription and translation and is a favorable prognostic biomarker for human colorectal adenocarcinoma. Front Oncol. 2022;12:845931. doi: 10.3389/fonc.2022.845931

 

  1. Oro AE, Higgins KM, Hu Z, Bonifas JM, Epstein EH Jr, Scott MP. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science. 1997;276(5313):817-821. doi: 10.1126/science.276.5313.817

 

  1. Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 2003;425(6960):846-851. doi: 10.1038/nature01972

 

  1. Thayer SP, Di Magliano MP, Heiser PW, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 2003;425(6960):851-856. doi: 10.1038/nature02009

 

  1. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 2003;422(6929):313-317. doi: 10.1038/nature01493

 

  1. Karhadkar SS, Bova GS, Abdallah N, et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. 2004;431(7009):707-712. doi: 10.1038/nature02962

 

  1. Qualtrough D, Buda A, Gaffield W, et al. Hedgehog signalling in colorectal tumour cells: Induction of apoptosis with cyclopamine treatment. Int J Cancer. 2004;110(6):831-837. doi: 10.1002/ijc.20227

 

  1. Liao X, Siu MK, Au CW, et al. Aberrant activation of hedgehog signaling pathway in ovarian cancers: Effect on prognosis, cell invasion and differentiation. Carcinogenesis. 2009;30(1):131-140. doi: 10.1093/carcin/bgn230

 

  1. Hui M, Cazet A, Nair R, Watkins DN, O’Toole SA, Swarbrick A. The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy. Breast Cancer Res. 2013;15(2):203. doi: 10.1186/bcr3401

 

  1. Jiang Y, Seimiya M, Schlumpf TB, Paro R. An intrinsic tumour eviction mechanism in Drosophila mediated by steroid hormone signalling. Nat Commun. 2018;9(1):3293. doi: 10.1038/s41467-018-05794-1

 

  1. Ashraf SI, Ip YT. The Snail protein family regulates neuroblast expression of inscuteable and string, genes involved in asymmetry and cell division in Drosophila. Development. 2001;128(23):4757-4767. doi: 10.1242/dev.128.23.4757

 

  1. Buescher M, Hing FS, Chia W. Formation of neuroblasts in the embryonic central nervous system of Drosophila melanogaster is controlled by SoxNeuro. Development. 2002;129(18): 4193-4203. doi: 10.1242/dev.129.18.4193

 

  1. Rhyu MS, Jan LY, Jan YN. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell. 1994;76(3):477-491. doi: 10.1016/0092-8674(94)90112-0

 

  1. Doe CQ, Chu-LaGraff Q, Wright DM, Scott MP. The prospero gene specifies cell fates in the Drosophila central nervous system. Cell. 1991;65(3):451-464. doi: 10.1016/0092-8674(91)90463-9

 

  1. Wang X, Kuang W, Ding J, et al. Systematic identification of the RNA-binding protein STAU2 as a key regulator of pancreatic adenocarcinoma. Cancers (Basel). 2022;14(15):3629. doi: 10.3390/cancers14153629

 

  1. Wodarz A, Ramrath A, Grimm A, Knust E. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J Cell Biol. 2000;150(6):1361-1374. doi: 10.1083/jcb.150.6.1361

 

  1. Lee CY, Robinson KJ, Doe CQ. Lgl, pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature. 2006;439(7076):594-598. doi: 10.1038/nature04299

 

  1. Parmentier ML, Woods D, Greig S, et al. Rapsynoid/partner of inscuteable controls asymmetric division of larval neuroblasts in Drosophila. J Neurosci. 2000;20(14):RC84. doi: 10.1523/JNEUROSCI.20-14-j0003.2000

 

  1. Schaefer M, Shevchenko A, Shevchenko A, Knoblich JA. A protein complex containing Inscuteable and the Galpha-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr Biol. 2000;10(7):353-362. doi: 10.1016/s0960-9822(00)00401-2

 

  1. Han Y, Xu S, Cheng K, et al. CENPF promotes papillary thyroid cancer progression by mediating cell proliferation and apoptosis. Exp Ther Med. 2021;21(4):401. doi: 10.3892/etm.2021.9832

 

  1. Hexiao T, Yuquan B, Lecai X, et al. Knockdown of CENPF inhibits the progression of lung adenocarcinoma mediated by ERbeta2/5 pathway. Aging (Albany NY). 2021;13(2):2604-2625. doi: 10.18632/aging.202303

 

  1. Kanai MI, Okabe M, Hiromi Y. Seven-up Controls switching of transcription factors that specify temporal identities of Drosophila neuroblasts. Dev Cell. 2005;8(2):203-213. doi: 10.1016/j.devcel.2004.12.014

 

  1. Sun D, Tian L, Zhu Y, et al. Subunits of ARID1 serve as novel biomarkers for the sensitivity to immune checkpoint inhibitors and prognosis of advanced non-small cell lung cancer. Mol Med. 2020;26(1):78. doi: 10.1186/s10020-020-00208-9
Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific