Modelling innate and adaptive immune responses in whole blood: A modified ex vivo assay without anticoagulants and synthetic media

Background: Blood is central to immune defense, rendering accurate assessment of its immunoreactivity vital for medical and biotechnological applications. Objective: This study presented a novel whole blood immunoreactivity assay (WBIA) designed to mimic natural physiological conditions, preserving essential cell–cell and cell–cytokine interactions for ex vivo immunological analysis. Methods: Fresh whole blood (with or without heparin) was stimulated with lipopolysaccharide (LPS), concanavalin A (Con A), or both, activating innate and adaptive immunity. Cytokine levels were measured through enzyme-linked immunosorbent assay after incubation. Results: Coagulation enhanced secretion of interleukin (IL)-2 and vascular endothelial growth factor (VEGF) in mitogen-stimulated samples. LPS induced tumor necrosis factor (TNF)-α, IL-6, and VEGF, while LPS + Con A co-stimulation produced the highest levels of interferon (IFN)-γ, IL-2, and IL-10. Peak cytokine concentrations were reached at 18 h, declining by 48–72 h. In 18 h LPS + Con A-stimulated serum blood samples from 30 healthy donors (19 women, 11 men, aged 30–55), cytokine levels (pg/mL, mean ± standard error of the mean) were as follows: IL-1β at (521 ± 62), IL-2 (24 ± 4), IL-6 (569 ± 43), IL-8 (277 ± 28), IL-10 (198 ± 35), IL-18 (293 ± 19), IFN-γ (227 ± 108), TNF-α (930 ± 126), and VEGF (655 ± 55). Conclusion: The WBIA provides a reliable, physiologically relevant model for evaluating immune responses to stimuli. Its high fidelity to in vivo conditions makes it a valuable tool for testing immunomodulatory drugs and monitoring immune status in clinical settings.
- Müller S, Kröger C, Schultze JL, Aschenbrenner AC. Whole blood stimulation as a tool for studying the human immune system. Eur J Immunol. 2024;54(2):e2350519. doi: 10.1002/eji.202350519
- Härtel C, Bein G, Kirchner H, Klüter H. A human whole-blood assay for analysis of T-cell function by quantification of cytokine mRNA. Scand J Immunol. 1999;49(6):649-654. doi: 10.1046/j.1365-3083.1999.00549.x
- Augustine NH, Pasi BM, Hill HR. Comparison of ATP production in whole blood and lymphocyte proliferation in response to phytohemagglutinin. J Clin Lab Anal. 2007;21(5):265-270. doi: 10.1002/jcla.20182
- Feuerecker M, Mayer W, Kaufmann I, et al. A corticoid-sensitive cytokine release assay for monitoring stress-mediated immune modulation. Clin Exp Immunol. 2013;172(2):290-299. doi: 10.1111/cei.12049
- Tran TAT, Grievink HW, Lipinska K, et al. Whole blood assay as a model for in vitro evaluation of inflammasome activation and subsequent caspase-mediated interleukin-1 beta release. PLoS One. 2019;14(4):e0214999. doi: 10.1371/journal.pone.0214999
- Buchheim JI, Feuerecker M, Balsamo M, et al. Monitoring functional immune responses with a cytokine release assay: ISS flight hardware design and experimental protocol for whole blood cultures executed under microgravity conditions. Front Physiol. 2024;14:1322852. doi: 10.3389/fphys.2023.1322852
- Gervais A, Le Floc’h C, Le Voyer T, et al. A sensitive assay for measuring whole-blood responses to type I IFNs. Proc Natl Acad Sci U S A. 2024;121(40):e2402983121. doi: 10.1073/pnas.2402983121
- Muñoz EM, Linhardt RJ. Heparin-binding domains in vascular biology. Arterioscler Thromb Vasc Biol. 2004;24(9):1549-1557. doi: 10.1161/01.atv.0000137189.22999.3f
- Xu X, Dai Y. Heparin: An intervenor in cell communication. J Cell Mol Med. 2010;14(1-2):175-180. doi: 10.1111/j.1582-4934.2009.00871.x
- Łukasik ZM, Makowski M, Makowska JS. From blood coagulation to innate and adaptive immunity: The role of platelets in the physiology and pathology of autoimmune disorders. Rheumatol Int. 2018;38(6):959-974. doi: 10.1007/s00296-018-4001-9
- Costantini TW, Kornblith LZ, Pritts T, Coimbra R. The intersection of coagulation activation and inflammation after injury: What you need to know. J Trauma Acute Care Surg. 2024;96(3):347-356. doi: 10.1097/TA.0000000000004190
- Seledtsov VI, Pyshenko AA, Lyubavskaya TY, Seledtsova IA, Von Delwig AA. Blood coagulation favors anti-Inflammatory immune responses in whole blood. Hematol Rep. 2025;17(2):19. doi: 10.3390/hematolrep17020019
- Petrovsky N, Harrison LC. Cytokine-based human whole blood assay for the detection of antigen-reactive T cells. J Immunol Methods. 1995;186(1):37-46. doi: 10.1016/0022-1759(95)00127-v
- Otani N, Shima M, Ueda T, et al. Evaluation of influenza vaccine-induced cell-mediated immunity: Comparison between methods using peripheral blood mononuclear cells and whole blood. Microbiol Immunol. 2019;63(6):223-228. doi: 10.1111/1348-0421.12687
- Scurr MJ, Zelek WM, Lippiatt G, et al. Whole blood-based measurement of SARS-CoV-2-specific T cells reveals asymptomatic infection and vaccine immunogenicity in healthy subjects and patients with solid-organ cancers. Immunology. 2022;165(2):250-259. doi: 10.1111/imm.13433
- Pinto MV, Barkoff AM, Bibi S, et al. A novel whole blood assay to quantify the release of T cell associated cytokines in response to Bordetella pertussis antigens. J Immunol Methods. 2024;534:113758. doi: 10.1016/j.jim.2024.113758
- Messina NL, Germano S, Chung AW, et al. Effect of bacille calmette-guérin vaccination on immune responses to SARS-CoV-2 and COVID-19 vaccination. Clin Transl Immunology. 2025;14(1):e70023. doi: 10.1002/cti2.70023
- Antoniak S. The coagulation system in host defense. Res Pract Thromb Haemost. 2018;2(3):549-557. doi: 10.1002/rth2.12109
- Watanabe S, Zenke K, Muroi M. Lipoteichoic acid inhibits lipopolysaccharide-induced TLR4 signaling by forming an inactive TLR4/MD-2 complex dimer. J Immunol. 2023;210(9):1386-1395. doi: 10.4049/jimmunol.2200872
- Huldani H, Rashid AI, Turaev KN, et al. Concanavalin A as a promising lectin-based anti-cancer agent: The molecular mechanisms and therapeutic potential. Cell Commun Signal. 2022;20(1):167. doi: 10.1186/s12964-022-00972-7
- Remick DG, Newcomb DE, Friedland JS. Whole-blood assays for cytokine production. Methods Mol Med. 2000;36:101-112. doi: 10.1385/1-59259-216-3.101
- Page L, Lauruschkat CD, Dennehy K, et al. Whole blood assay with dual co-stimulation for antigen-specific analysis of host immunity to fungal and viral pathogens. J Vis Exp. 2024;211:e66593. doi: 10.3791/66593
- Johnson VJ, Luster MI, Edwards A, et al. An in vitro test battery using human whole blood for immunotoxicity hazard identification: Proof of concept studies with dexamethasone and benzo(a)pyrene. Toxicology. 2025;515:154153. doi: 10.1016/j.tox.2025.154153
- Barclay TG, Day CM, Petrovsky N, Garg S. Review of polysaccharide particle-based functional drug delivery. Carbohydr Polym. 2019;221:94-112. doi: 10.1016/j.carbpol.2019.05.067
- Buijsers B, Yanginlar C, Maciej-Hulme ML, De Mast Q, Van der Vlag J. Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients. EBioMedicine. 2020;59:102969. doi: 10.1016/j.ebiom.2020.102969
- Mousavi S, Moradi M, Khorshidahmad T, Motamedi M. Anti-inflammatory effects of heparin and its derivatives: A systematic review. Adv Pharmacol Sci. 2015;2015:507151. doi: 10.1155/2015/507151
- Makino-Okamura C, Niki Y, Takeuchi S, et al. Heparin inhibits melanosome uptake and inflammatory response coupled with phagocytosis through blocking PI3k/Akt and MEK/ERK signaling pathways in human epidermal keratinocytes. Pigment Cell Melanoma Res. 2014;27(6):1063-1074. doi: 10.1111/pcmr.12287
- Talsma DT, Katta K, Boersema M, et al. Increased migration of antigen presenting cells to newly-formed lymphatic vessels in transplanted kidneys by glycol-split heparin. PLoS One. 2017;12(6):e0180206. doi: 10.1371/journal.pone.0180206
- Nguyen KG, Gillam FB, Hopkins JJ, et al. Molecular mechanisms of heparin-induced modulation of human interleukin 12 bioactivity. J Biol Chem. 2019;294(12):4412-4424. doi: 10.1074/jbc.ra118.006193
- Sato K, Kondo M, Sakuta K, et al. Impact of culture medium on the expansion of T cells for immunotherapy. Cytotherapy. 2009;11(7):936-946. doi: 10.3109/14653240903219114
- MacPherson S, Keyes S, Kilgour MK, et al. Clinically relevant T cell expansion media activate distinct metabolic programs uncoupled from cellular function. Mol Ther Methods Clin Dev. 2022;24:380-393. doi: 10.1016/j.omtm.2022.02.004
- Grosick R, Alvarado-Vazquez PA, Messersmith AR, Romero-Sandoval EA. High glucose induces a priming effect in macrophages and exacerbates the production of pro-inflammatory cytokines after a challenge. J Pain Res. 2018;11:1769-1778. doi: 10.2147/Jpr.S164493
- Witcoski Junior L, De Lima JD, Somensi AG, et al. Metabolic reprogramming of macrophages in the context of type 2 diabetes. Eur J Med Res. 2024;29(1):497. doi: 10.1186/s40001-024-02069-y
- Mallick S, Duttaroy AK, Bose B. A snapshot of cytokine dynamics: A fine balance between health and disease. J Cell Biochem. 2025;126(1):e30680. doi: 10.1002/jcb.30680
- Seledtsov VI, Seledtsova GV, Von Delwig AA. Immune-based, multifaceted inactivation of pathogenic T lymphocytes in treating autoimmune diseases. Explor Immunol. 2023;3:506-512. doi: 10.37349/ei.2023.00117
- Hoyer KK, Dooms H, Barron L, Abbas AK. Interleukin-2 in the development and control of inflammatory disease. Immunol Rev. 2008;226:19-28. doi: 10.1111/j.1600-065X.2008.00697.x
- Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol. 2012;12(3):180-190. doi: 10.1038/nri3156
- Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13(1):34-45. doi: 10.1038/nri3345