AccScience Publishing / JBM / Online First / DOI: 10.14440/jbm.2024.0122
RESEARCH ARTICLE

Investigation of microstructural symmetry in regional zones of human multi-rooted teeth using optical, electrical, and ion diffusion methods

Vladimir Mikhailovich Zolotarev*
Show Less
1 Department of Physical Optics and Spectroscopy, Faculty of Photonics, ITMO University, Saint-Petersburg 197101, Russia
Submitted: 22 November 2024 | Revised: 24 March 2025 | Accepted: 27 June 2025 | Published: 15 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Background: Dentin is a mineralized tissue characterized by a complex network of dentinal tubules, whose arrangement significantly influences the mechanical and physiological properties of teeth. Objective: This study investigated the influence of the microstructural symmetry of dentinal tubules in two orthogonal sections of the crown of human molar and premolar teeth. Methods: The effect of symmetry on the microstructure of dentin sections was studied for two orthogonal sections of the human molar and premolar crown. The symmetry of local zones of tooth sections was first examined using a set of methods: optical, electrical, and ion-diffusion techniques. The methods used have different resolutions and display both the general properties of the dentin structure and the properties that are specifically revealed by an individual method. It is shown that dentinal tubules originate from the center of the cusps of both molars and premolars, forming S-shaped fiber bundles presenting an axial-radial symmetry. Results: The dentinal tubules were shown to originate from the center of the cusps in both molar and premolar teeth, forming S-shaped fiber bundles with axial-radial symmetry. These bundles were arranged along axes, extending from the pulp toward the centers of the cusps of the tooth crown. Within these zones, distinct optical patterns resembling conoscopic figures in the form of a “Maltese cross” were observed. This indicates a highly ordered architecture composed of optically anisotropic uniaxial tubules. The optical data were correlated well with findings obtained by electrometric and ion diffusion methods, including dentinal tubule staining. Conclusion: The polarization optical is a valuable tool for studying various regional organizations of dentinal tubules in dentin.

Keywords
Symmetry
Optical anisotropy
Dentinal tubules
Growth zones
Funding
This work was carried out within the framework of the Federal Target Program “Integration of Science and Higher Education in Russia for 2002–2006,” Project No. A0141-UNC “Optics and Scientific Instrument.”
Conflict of interest
The author declares no conflict of interest.
References
  1. Forshaw R. Dental calculus - oral health, forensic studies and archaeology: A review. Br Dent J. 2022;233(11):961-967. doi: 10.1038/s41415-022-5266-7

 

  1. Mays S., Zakrzewski S., Field S. The relationship between dental wear and age at death in British archaeological human skeletal remains: A re-evaluation of the ‘Brothwell chart’. J Archaeol Sci Rep. 2022;46:103707. doi: 10.1016/j.jasrep.2022.103707

 

  1. Kavanagh KD, Evans AR, Jernvall J. Predicting evolutionary patterns of mammalian teeth from development. Nature. 2007;449(7161):427-432. doi: 10.1038/nature06153

 

  1. Postolaki AI. Symmetry and asymmetry in the harmony of the face and dentition. Adv Mod Natural Sci. 2015;9(3):461-466.

 

  1. Nikolaev VG, Manashev GG, Zhukov EL. Phylogenetic formation of multi-rooted teeth of mammals and humans. Adv Mod Natl Sci. 2003;(8):109-119.

 

  1. Yastrebova SA, Sergeeva VE. Evolution of the Dental System. Cheboksary; 2010. Available from: https://biogen.chuvsu.ru/ uch_1_biol/lech/evoluciya_zubochel_sys.pdf [Last accessed on 2025 Mar 24].

 

  1. Ota MS, Nakahara T, Kanri Y, et al. Patterning of molar tooth roots in mammals. J Oral Biosci. 2009;51:193-198. doi: 10.1016/S1349-0079(09)80003-0

 

  1. Romer A, Parsons T. Vertebrate Anatomy. Vol. 1. Moscow: Mir; 1992.

 

  1. Zuccotti LF, Williamson MD, Limp WF, Ungar PS. Technical note: Modeling primate occlusal topography using geographic information systems technology. Amer J Phys Anthropol. 1998;107(1):137-142. doi: 10.1002/(sici)1096-8644(199809)107:1<137::aid-ajpa11>3.0.co;2-1

 

  1. Popov VG. The Main Symmetry of Nature. St. Petersburg: Anatoly; 2005.

 

  1. Komponiec AC. Symmetry in the Micro- and Macroworld. Moscow: Science; 1978.

 

  1. Ovchinnikov NF. Symmetry - A Pattern of Nature and A Principle of Cognition, the Principle of Symmetry. Moscow: Science; 1978.

 

  1. Petukhov SV. Biomechanics, Bionics and Symmetry. Moscow: Science; 1981.

 

  1. Luukko K, Kettunen P, Fristad I, Berggreen E. Structure and Functions of the Dentin-Pulp Complex. In: Kenneth M, editor. Cohen’s Pathways of the Pulp. Hargreaves and Stephen Cohen. 10th ed., Ch. 12. Philadelphia, PA: Elsevier Inc.; 2011. p. 452-503. doi: 10.1016/B978-0-323-06489-7.00012-6

 

  1. Boushell LW, Sturdevant JR. In: Ritter AV, Boushell LW, Walter R, editors. Sturdevant’s Art and Science of Operative Dentistry. 7th ed. St. Louis, Missouri: Elsevier Inc.; 2019. p. 1-39.

 

  1. Arola D, Gao S, Zhang H, Masri R. The tooth: Its structure and properties. Dent Clin North Am. 2017;61(4):651-668. doi: 10.1016/j.cden.2017.05.001

 

  1. Tjäderhane L, Carrilho MR, Breschi L, Tay FR, Pashley DH. Dentin basic structure and composition-an overview. Endod Top. 2012;20(1):3-29. doi: 10.1111/j.1601-1546.2012.00269.x

 

  1. Kaye H, Herold RC. Structure of human dentine. I. Phase contrast, polarization, interference and bright field microscopic observations on the lateral branch system. Arch Oral Biol. 1966;11(3):355-368. doi: 10.1016/0003-9969(66)90138-5

 

  1. Weiner S, Veis A, Beniash E, et al. Peritubular dentin formation: Crystal organization and the macromolecular constituents in human teeth. J Struct Biol. 1999;126(1):27-41. doi: 10.1006/jsbi.1999.4096

 

  1. Chu CY, Kuo TC, Chang SF, Shyu YC, Lin CP. Comparison of the microstructure of crown and root dentin by scanning electron microscopic study. J Dent Sci. 2010;5(1):14-20. doi: 10.1016/S1991-7902(10)60003-7

 

  1. Tsukada K. Ultrastructure of the relationship between odontoblast processes and nerve fibres in dentinal tubules of rat molar teeth. Arch Oral Biol. 1987;32:87-92. doi: 10.1016/0003-9969(87)90050-1

 

  1. Byers MR. Development of sensory innervation in dentin. J Comp Neurol. 1980;191(3):413-427. doi: 10.1002/cne.901910307

 

  1. Gillam DG. Dentin hypersensitivity: An introduction to differential diagnosis. Dent Pract. 2010;48:34-35.

 

  1. Närhi M, Virtanen A, Kuhta J, Huopaniemi T. Electrical stimulation of teeth with a pulp tester in the cat. Scand J Dent Res. 1979;87:32-38. doi: 10.1111/j.1600-0722.1979.tb01937.x

 

  1. Närhi M. The neurophysiology of the teeth. Dent Clin North Am. 1990;34(3):439-448.

 

  1. Gotliv BA, Veis A. The composition of bovine peritubular dentin: Matching TOF-SIMS, scanning electron microscopy and biochemical component distributions. New light on peritubular dentin function. Cells Tissues Organs. 2009;189(1-4):12-19. doi: 10.1159/000151726

 

  1. Forssell-Ahlberg K, Brännström M, Edwal L. The diameter and number of dental tubules in rat, cat, dog and monkey. A comparative electron microscopic study. Acta Odontol Scand. 1975;33(5):243-250. doi: 10.3109/00016357509004629

 

  1. Zolotarev VM. Architectonics of the crown part of the tooth of humans and mammals. Acta Sci Otolaryng. 2023;5(2):3-16.

 

  1. Sova SS, Tjäderhane L, Heikkilä PA, Jernvall J. A microCT study of three-dimensional patterns of biomineralization in pig molars. Front Physiol. 2018(9);9:71. doi: 10.3389/fphys.2018.00071

 

  1. Lopes FM, Markarian RA, Sendyk CL, Duarte CP, Arana- Chavez VE. Swine teeth as potential substitutes for in vitro studies in tooth adhesion: A SEM observation. Arch Oral Biol. 2006;51(7):548-551. doi: 10.1016/j.archoralbio.2006.01.009

 

  1. Ortiz-Ruiz AJ, Teruel-Fernández JD, Alcolea-Rubio LA, Hernández-Fernández A, Martínez- Beneyto Y, Gispert-Guirado F. Structural differences in enamel and dentin in human, bovine, porcine, and ovine teeth. Ann Anat. 2018;218:7-17. doi: 10.1016/j.aanat.2017.12.012

 

  1. Teruel JD, Alcolea A, Hernández A, Ruiz AJ. Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Arch Oral Biol. 2015;60(5):768-775. doi: 10.1016/j.archoralbio.2015.01.014

 

  1. Pashley DH, Andringa HJ, Derkson GD, Derkson ME, Kalathoor SR. Regional variability in the permeability of human dentine. Arch Oral Biol. 1987;32(7):519-523. doi: 10.1016/s0003-9969(87)80014-6

 

  1. Walton RE, Outhwaite WC, Pashley DF. Magnification--an interesting optical property of dentin. J Dent Res. 1976;55(4):639-642. doi: 10.1177/00220345760550041601

 

  1. Altshuler GB, Grisimov VN. The effect of wave-guide light propagation in human tooth. Dokl Akad Nauk SSSR. 1990;310(5):1245-1248.

 

  1. Grisimov VN. Refractive index of dentin. Opt Spekt. 1994;77(2):272-274.

 

  1. Zolotarev VM., Grisimov VN. Architectonics and optical properties of tooth dentin and enamel. Opt Spekt. 2001;90(5):838-845.

 

  1. Zolotarev VM. Interference of light in composite systems based on ordered anisotropic fibers. Part 1. Physical foundations. Opt J. 2002;69(3):10-14.

 

  1. Zolotarev VM, Tulin DV, Oreshkov AB, Volchek BZ, Drichko NM, Kolpakova NV. Light interference in composite systems based on ordered anisotropic fibers. Part 2. Optical studies of the influence of dentinal tubule structural organization on the structure and shape of the tooth crown. Opt J. 2002;69(3):15-20.

 

  1. Zolotarev VM. Visualization of the symmetry of regional zones of human molar dentin in polarized light. Opt Spectrosc. 2024;132(2):198-210. doi: 10.61011/os.2024.02.57780.5298-23

 

  1. Karteva E, Manchorova-Veleva N, Damyanov Z, Karteva T. Morphology and structural characterization of human enamel and dentin by optical and scanning electron microscopy. J IMAB. 2019;25(4):2713-2867. doi: 10.5272/jimab.2019254.2744

 

  1. Argunova TS, Gudkina ZV, Gutkin MY, et al. Third international conference. “Physics for life sciences” study of dentin structural features by computed microtomography and transmission electron microscopy. Tech Phys. 2020;65:1391-1402. doi: 10.1134/S1063784220090054

 

  1. Seyedkavoosi S, Sevostianov I. Micromechanics of dentin: Review. Rev Adv Mater Tech. 2019;1:1-14. doi: 10.17586/2687-0568-2019-1-1-1-26

 

  1. Ivanova GG., Kasumova MK, Tikhonov EP. Digital measurements and computer visualization of dentin structure using electrometry. Int Stomatol. 2018;22 (2):112-116.

 

  1. Ivanova GG, Leontiev VK, Pitaeva AN, Zhorova TN. Development and scientific substantiation of new methods for diagnostics, prediction and increasing the resistance of tooth enamel to caries. Int Stomatol. 1998;1:32-37.

 

  1. Tikhonov EP. The role of measurements in the identification of a physical and mathematical model of a biological object. Vestn Metrolog Akad. 2003;11:14-28.

 

  1. Tikhonov EP. Micro- and macromorphology in the formation of the genesis of hard dental tissues. Int Stomatol. 2005;2(27):73-77.

 

  1. Tikhonov EP. State and prospects of theoretical and experimental studies of the morphology of dental hard tissues. Part III: Mathematical description and experimental results. Biotechnosphere. 2014;4(34):32-40.

 

  1. Wang XJ, Milner TE, De Boer JF, Zhang Y, Pashley DH, Nelson JS. Characterization of dentin and enamel by use of optical coherence tomography. Appl Opt. 1999;38(10):2092-2096. doi: 10.1364/ao.38.002092

 

  1. Pashley DH, Livingston MJ, Greenhill JD. Regional resistances to fluid flow in human dentine in vitro. Arch Oral Biol. 1978;23(9):807-810. doi: 10.1016/0003-9 969(78)90159-0

 

  1. Pashley DH. Dentine permeability and its role in the pathobiology of dentine sensitivity. Arch Oral Biol. 1994;39 Suppl: S73-S80. doi: 10.1016/0003-9969(94)90191-0

 

  1. Hume WR. Influence of dentine on the pulpward release of eugenol or acids from restorative materials. J Oral Rehabil. 1994;21(4):469-473. doi: 10.1111/j.1365-2842.1994.tb01161.x

 

  1. Mjör IA, Nordahl I. The density and branching of dentinal tubules in human teeth. Arch Oral Biol. 1996;41(5):401-412. doi: 10.1016/0003-9969(96)00008-8

 

  1. Smith TN. Teeth and human life-history evolution. Annu Rev Anthropol. 2013;42(1):191-208. doi: 10.1146/annurev-anthro-092412-155550

 

  1. Jheon AH, Seidel K, Biehs B, Klein OD. From molecules to mastication: The development and evolution of teeth. Wiley Interdiscip Rev Dev Biol. 2012;2(2):165-183. doi: 10.1002/wdev.63

 

  1. Evans AR, Wilson GP, Fortelius M, Jernvall J. High-level similarity of dentitions in carnivorans and rodents. Nature. 2007;445:78-81. doi: 10.1038/nature05433
Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific