Pre-analytical considerations for microRNA quantification in childhood leukemia research

Background: MicroRNAs (miRNAs) have gained significant attention as potential biomarkers in childhood leukemia, offering insights into diagnosis, prognosis, and therapeutic targeting. However, the clinical translation of miRNA biomarkers faces several challenges, including inconsistencies in results caused by methodological differences, sample processing variability, and a lack of standardized normalization techniques. In addition, miRNA profiles are highly cell-specific, with unique signatures for different blood cell types and leukemic blasts, reflecting their distinct biological roles and disease states. Pre-analytical factors are critical in ensuring the accuracy and reproducibility of miRNA quantification. The selectively enriched and highly stable exosomal miRNAs have shown great promise for studying intercellular communication and disease-specific miRNAs. The selection of the analytical matrix should align with the specific objectives of the research or diagnostic application. Addressing technical challenges and recording potential confounding variables (e.g., age, gender, ethnicity, body mass index, menstrual cycle, fasting, circadian rhythm, comorbidities, medications, smoking, and physical activity) are essential to enhancing the reproducibility and reliability of miRNA biomarkers. Objective: This review aims to highlight the challenges facing miRNA quantification in childhood leukemias, scrutinizing all relevant pre-analytical issues, including the preferred specimen source, leukemic blast type and count, the selection of suitable blood components, the impact of time and freeze–thaw cycles, collection, processing, and storage variables. Conclusion: Further research is needed to standardize methodologies and expand our understanding of miRNA interaction networks, ultimately advancing the application of miRNAs in childhood leukemia research.
- Burki T. 2024 Nobel prize awarded for work on microRNAs. Lancet. 2024;404(10462):1507-1508. doi: 10.1016/S0140-6736(24)02303-1
- Morozova N, Zinovyev A, Nonne N, Pritchard LL, Gorban AN, Harel-Bellan A. Kinetic signatures of microRNA modes of action. RNA. 2012;18(9):1635-1655. doi: 10.1261/rna.032284.112
- Nassiri SM, Ahmadi Afshar N, Almasi P. Insight into microRNAs’ involvement in hematopoiesis: Current standing point of findings. Stem Cell Res Ther. 2023;14(1):282. doi: 10.1186/s13287-023-03504-3
- O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010;10(2):111-122. doi: 10.1038/nri2708
- Mendiola-Soto DK, Bárcenas-López DA, Pérez-Amado CJ, et al. MiRNAs in hematopoiesis and acute lymphoblastic leukemia. Int J Mol Sci. 2023;24(6):5436. doi: 10.3390/ijms24065436
- Barrios-Palacios D, Organista-Nava J, Balandrán JC, et al. The role of miRNAs in childhood acute lymphoblastic leukemia relapse and the associated molecular mechanisms. Int J Mol Sci. 2023;25(1):119. doi: 10.3390/ijms25010119
- Kyriakidis I, Kyriakidis K, Tsezou A. MicroRNAs and the diagnosis of childhood acute lymphoblastic leukemia: Systematic review, meta-analysis and re-analysis with novel small RNA-seq tools. Cancers (Basel). 2022;14(16):3976. doi: 10.3390/cancers14163976
- Kyriakidis I, Pelagiadis I, Katzilakis N, et al. DICER1 rs3742330 and AGO1 rs636832 polymorphisms and acute lymphoblastic leukemia in Greek children and adolescents: A case-control study. Gene Rep. 2024;37:102043. doi: 10.1016/j.genrep.2024.102043
- Schotte D, Akbari Moqadam F, Lange-Turenhout EAM, et al. Discovery of new microRNAs by small RNAome deep sequencing in childhood acute lymphoblastic leukemia. Leukemia. 2011;25(9):1389-1399. doi: 10.1038/leu.2011.105
- Umerez M, Garcia-Obregon S, Martin-Guerrero I, Astigarraga I, Gutierrez-Camino A, Garcia-Orad A. Role of miRNAs in treatment response and toxicity of childhood acute lymphoblastic leukemia. Pharmacogenomics. 2018;19(4):361-373. doi: 10.2217/pgs-2017-0164
- Kubota H, Ueno H, Tasaka K, et al. RNA-seq-based miRNA signature as an independent predictor of relapse in pediatric B-cell acute lymphoblastic leukemia. Blood Adv. 2024;8(5):1258-1271. doi: 10.1182/bloodadvances.2023011583
- Saffari N, Rahgozar S, Faraji E, Sahin F. Plasma-derived exosomal miR-326, a prognostic biomarker and novel candidate for treatment of drug resistant pediatric acute lymphoblastic leukemia. Sci Rep. 2024;14(1):691. doi: 10.1038/s41598-023-50628-w
- Erkeland SJ. Computational analysis of a microRNA signature for poor prognosis suggests a microRNA-controlled stemness pathway in paediatric acute leukaemia. Br J Haematol. 2023;202(1):11-12. doi: 10.1111/bjh.18780
- Totoń-Żurańska J, Sulicka-Grodzicka J, Seweryn MT, et al. MicroRNA composition of plasma extracellular vesicles: A harbinger of late cardiotoxicity of doxorubicin. Mol Med. 2022;28(1):156. doi: 10.1186/s10020-022-00588-0
- Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141(5):672-675. doi: 10.1111/j.1365-2141.2008.07077.x
- Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50(4):298-301. doi: 10.1016/j.ymeth.2010.01.032
- Foye C, Yan IK, David W, et al. Comparison of miRNA quantitation by nanostring in serum and plasma samples. PLoS One. 2017;12(12):e0189165. doi: 10.1371/journal.pone.0189165
- Sun X, Guan G, Dai Y, et al. microRNA-155-5p initiates childhood acute lymphoblastic leukemia by regulating the IRF4/CDK6/CBL axis. Lab Invest. 2022;102(4):411-421. doi: 10.1038/s41374-021-00638-x
- Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: Biogenesis, function and regulation. Nat Rev Genet. 2023;24(12):816-833. doi: 10.1038/s41576-023-00611-y
- Mitchell AJ, Gray WD, Hayek SS, et al. Platelets confound the measurement of extracellular miRNA in archived plasma. Sci Rep. 2016;6:32651. doi: 10.1038/srep32651
- Mack T, Gianferri T, Niedermayer A, Debatin KM, Meyer LH, Muench V. Benchmarking miRNA reference genes in B-cell precursor acute lymphoblastic leukemia. Sci Rep. 2024;14(1):26390. doi: 10.1038/s41598-024-77733-8
- Costé É, Rouleux-Bonnin F. The crucial choice of reference genes: Identification of miR-191-5p for normalization of miRNAs expression in bone marrow mesenchymal stromal cell and HS27a/HS5 cell lines. Sci Rep. 2020;10(1):17728. doi: 10.1038/s41598-020-74685-7
- Kavakiotis I, Alexiou A, Tastsoglou S, Vlachos IS, HatzigeorgiouAG. DIANA-miTED: A microRNA tissue expression database. Nucleic Acids Res. 2022;50(D1):D1055-D1061. doi: 10.1093/nar/gkab733
- Hunter MP, Ismail N, Zhang X, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008;3(11):e3694. doi: 10.1371/journal.pone.0003694
- Moldovan L, Batte KE, Trgovcich J, Wisler J, Marsh CB, Piper M. Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med. 2014;18(3):371-390. doi: 10.1111/jcmm.12236
- Max KEA, Bertram K, Akat KM, et al. Human plasma and serum extracellular small RNA reference profiles and their clinical utility. Proc Natl Acad Sci U S A. 2018;115(23):E5334-E5343. doi: 10.1073/pnas.1714397115
- Wakabayashi I, Marumo M, Ekawa K, Daimon T. Differences in serum and plasma levels of microRNAs and their time-course changes after blood collection. Pract Lab Med. 2024;39:e00376. doi: 10.1016/j.plabm.2024.e00376
- Dufourd T, Robil N, Mallet D, et al. Plasma or serum? A qualitative study on rodents and humans using high-throughput microRNA sequencing for circulating biomarkers. Biol Methods Protoc. 2019;4(1):bpz006. doi: 10.1093/biomethods/bpz006
- Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the MicroRNA spectrum between serum and plasma. PLoS One. 2012;7(7):e41561. doi: 10.1371/journal.pone.0041561
- Wakabayashi I, Sotoda Y, Eguchi R. Contribution of platelet-derived microRNAs to serum microRNAs in healthy men. Platelets. 2021;32(7):984-987. doi: 10.1080/09537104.2020.1810223
- Leong SY, Lok WW, Goh KY, et al. High-throughput microfluidic extraction of platelet-free plasma for microRNA and extracellular vesicle analysis. ACS Nano. 2024;18(8):6623-6637. doi: 10.1021/acsnano.3c12862
- Ohyashiki JH, Umezu T, Kobayashi C, et al. Impact on cell to plasma ratio of miR-92a in patients with acute leukemia: In vivo assessment of cell to plasma ratio of miR-92a. BMC Res Notes. 2010;3:347. doi: 10.1186/1756-0500-3-347
- Shah JS, Soon PS, Marsh DJ. Comparison of methodologies to detect low levels of hemolysis in serum for accurate assessment of serum microRNAs. PLoS One. 2016;11(4):e0153200. doi: 10.1371/journal.pone.0153200
- Grieco GE, Sebastiani G, Fignani D, et al. Protocol to analyze circulating small non-coding RNAs by high-throughput RNA sequencing from human plasma samples. STAR Protoc. 2021;2(3):100606. doi: 10.1016/j.xpro.2021.100606
- Bryzgunova O, Konoshenko M, Zaporozhchenko I, Yakovlev A, Laktionov P. Isolation of cell-free miRNA from biological fluids: Influencing factors and methods. Diagnostics (Basel). 2021;11(5):865. doi: 10.3390/diagnostics11050865
- Tamkovich S, Tutanov O, Efimenko A, et al. Blood circulating exosomes contain distinguishable fractions of free and cell-surface-associated vesicles. Curr Mol Med. 2019;19(4):273-285. doi: 10.2174/1566524019666190314120532
- Ge Q, Zhou Y, Lu J, Bai Y, Xie X, Lu Z. miRNA in plasma exosome is stable under different storage conditions. Molecules. 2014;19(2):1568-1575. doi: 10.3390/molecules19021568
- Ghosh S, Dey A, Chakrabarti A, et al. The theragnostic advances of exosomes in managing leukaemia. J Cell Mol Med. 2024;28(23):e70052. doi: 10.1111/jcmm.70052
- Jehn J, Trudzinski F, Horos R, et al. miR-Blood - a small RNA atlas of human blood components. Sci Data. 2024;11(1):164. doi: 10.1038/s41597-024-02976-z
- Nemes K, Csóka M, Nagy N, et al. Expression of certain leukemia/lymphoma related microRNAs and its correlation with prognosis in childhood acute lymphoblastic leukemia. Pathol Oncol Res. 2015;21(3):597-604. doi: 10.1007/s12253-014-9861-z
- Rzepiel A, Kutszegi N, Gézsi A, et al. Circulating microRNAs as minimal residual disease biomarkers in childhood acute lymphoblastic leukemia. J Transl Med. 2019;17(1):372. doi: 10.1186/s12967-019-2114-x
- Duyu M, Durmaz B, Gunduz C, et al. Prospective evaluation of whole genome microRNA expression profiling in childhood acute lymphoblastic leukemia. Biomed Res Int. 2014;2014:967585. doi: 10.1155/2014/967585
- Nair RA, Verma VK, Beevi SS, et al. MicroRNA signatures in blood or bone marrow distinguish subtypes of pediatric acute lymphoblastic leukemia. Transl Oncol. 2020;13(9):100800. doi: 10.1016/j.tranon.2020.100800
- Ramani R, Megason G, Schallheim J, et al. Integrative analysis of microRNA-mediated gene signatures and pathways modulating white blood cell count in childhood acute lymphoblastic leukemia. Biomark Insights. 2017;12:1177271917702895. doi: 10.1177/1177271917702895
- Labib HA, Elantouny NG, Ibrahim NF, Alnagar AA. Upregulation of microRNA-21 is a poor prognostic marker in patients with childhood B cell acute lymphoblastic leukemia. Hematology. 2017;22(7):392-397. doi: 10.1080/10245332.2017.1292204
- De Liz TS, Rode MP, Cisilotto J, Silva AH, Vernaschi MM, Creczynski-Pasa TB. MicroRNA expression profiling of bone marrow and peripheral blood samples in children with B-cell acute lymphoblastic leukemia: MiR-223-3p, miR- 363-3p, and miR-708-5p as potential biomarkers. Gene Rep. 2025;38:102120. doi: 10.1016/j.genrep.2024.102120
- Wang XX, Zhang R, Li Y. Expression of the miR-148/152 family in acute myeloid leukemia and its clinical significance. Med Sci Monit. 2017;23:4768-4778. doi: 10.12659/MSM.902689
- Wang L, Wang Y, Lin J. MiR-152-3p promotes the development of chronic myeloid leukemia by inhibiting p27. Eur Rev Med Pharmacol Sci. 2018;22(24):8789-8796. doi: 10.26355/eurrev_201812_16646
- Scheibner KA, Teaboldt B, Hauer MC, et al. MiR-27a functions as a tumor suppressor in acute leukemia by regulating 14-3-3θ. PLoS One. 2012;7(12):e50895. doi: 10.1371/journal.pone.0050895
- Wang W, Corrigan-Cummins M, Barber EA, et al. Aberrant levels of miRNAs in bone marrow microenvironment and peripheral blood of myeloma patients and disease progression. J Mol Diagn. 2015;17(6):669-678. doi: 10.1016/j.jmoldx.2015.06.006
- Sevcikova A, Fridrichova I, Nikolaieva N, et al. Clinical significance of microRNAs in hematologic malignancies and hematopoietic stem cell transplantation. Cancers (Basel). 2023;15(9):2658. doi: 10.3390/cancers15092658
- Petriv OI, Kuchenbauer F, Delaney AD, et al. Comprehensive microRNA expression profiling of the hematopoietic hierarchy. Proc Natl Acad Sci U S A. 2010;107(35):15443-15448. doi: 10.1073/pnas.1009320107
- Moses BS, Evans R, Slone WL, et al. Bone marrow microenvironment niche regulates miR-221/222 in acute lymphoblastic leukemia. Mol Cancer Res. 2016;14(10):909-919. doi: 10.1158/1541-7786.MCR-15-0474
- Frediani JN, Fabbri M. Essential role of miRNAs in orchestrating the biology of the tumor microenvironment. Mol Cancer. 2016;15(1):42. doi: 10.1186/s12943-016-0525-3
- Chiarini F, Lonetti A, Evangelisti C, et al. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim Biophys Acta. 2016;1863(3):449-463. doi: 10.1016/j.bbamcr.2015.08.015
- Pan Z, Tian Y, Niu G, Cao C. Role of microRNAs in remodeling the tumor microenvironment (review). Int J Oncol. 2019;56(2):407-416. doi: 10.3892/ijo.2019.4952
- Carabia J, Carpio C, Abrisqueta P, et al. Microenvironment regulates the expression of miR-21 and tumor suppressor genes PTEN, PIAS3 and PDCD4 through ZAP-70 in chronic lymphocytic leukemia. Sci Rep. 2017;7(1):12262. doi: 10.1038/s41598-017-12135-7
- Kim SH, MacIntyre DA, Sykes L, Arianoglou M, Bennett PR, Terzidou V. Whole blood holding time prior to plasma processing alters microRNA expression profile. Front Genet. 2021;12:818334. doi: 10.3389/fgene.2021.818334
- Chandel DS, Tom WA, Jiang C, et al. Preanalytical considerations for clinical assays of circulating human miRNA- 451a, miRNA-423-5p and miRNA-199a-3p for diagnostic purposes. PLoS One. 2024;19(5):e0303598. doi: 10.1371/journal.pone.0303598
- Tablin F, Walker NJ, Klein SD, Field CL, Crowe JH. Animal models for studies on cold-induced platelet activation in human beings. J Lab Clin Med. 2000;135(4):339-346. doi: 10.1067/mlc.2000.105619
- Sourvinou IS, Markou A, Lianidou ES. Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. J Mol Diagn. 2013;15(6):827-834. doi: 10.1016/j.jmoldx.2013.07.005
- Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513-10518. doi: 10.1073/pnas.0804549105
- Kim DJ, Linnstaedt S, Palma J, et al. Plasma components affect accuracy of circulating cancer-related microRNA quantitation. J Mol Diagn. 2012;14(1):71-80. doi: 10.1016/j.jmoldx.2011.09.002
- Becker N, Lockwood CM. Pre-analytical variables in miRNA analysis. Clin Biochem. 2013;46(10-11):861-868. doi: 10.1016/j.clinbiochem.2013.02.015
- Singh R, Ramasubramanian B, Kanji S, Chakraborty AR, Haque SJ, Chakravarti A. Circulating microRNAs in cancer: Hope or hype? Cancer Lett. 2016;381(1):113-121. doi: 10.1016/j.canlet.2016.07.002
- Witwer KW. XenomiRs and miRNA homeostasis in health and disease. RNA Biol. 2012;9(9):1147-1154. doi: 10.4161/rna.21619
- Figueredo DS, Gitaí DLG, Andrade TG. Daily variations in the expression of miR-16 and miR-181a in human leukocytes. Blood Cells Mol Dis. 2015;54(4):364-368. doi: 10.1016/j.bcmd.2015.01.004
- Sandau US, Wiedrick JT, McFarland TJ, et al. Analysis of the longitudinal stability of human plasma miRNAs and implications for disease biomarkers. Sci Rep. 2024;14(1):2148. doi: 10.1038/s41598-024-52681-5
- Takizawa S, Matsuzaki J, Ochiya T. Circulating microRNAs: Challenges with their use as liquid biopsy biomarkers. Cancer Biomark. 2022;35(1):1-9. doi: 10.3233/CBM-210223
- Precazzini F, Detassis S, Imperatori AS, Denti MA, Campomenosi P. Measurements methods for the development of microRNA-based tests for cancer diagnosis. Int J Mol Sci. 2021;22(3):1176. doi: 10.3390/ijms22031176
- Meder B, Backes C, Haas J, et al. Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. Clin Chem. 2014;60(9):1200-1208. doi: 10.1373/clinchem.2014.224238
- Jensen K, Brusletto BS, Aass HCD, Olstad OK, Kierulf P, Gautvik KM. Transcriptional profiling of mRNAs and microRNAs in human bone marrow precursor B cells identifies subset- and age-specific variations. PLoS One. 2013;8(7):e70721. doi: 10.1371/journal.pone.0070721
- De Boer HC, Van Solingen C, Prins J, et al. Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease. Eur Heart J. 2013;34(44):3451-3457. doi: 10.1093/eurheartj/eht007
- Ward J, Kanchagar C, Veksler-Lublinsky I, et al. Circulating microRNA profiles in human patients with acetaminophen hepatotoxicity or ischemic hepatitis. Proc Natl Acad Sci U S A. 2014;111(33):12169-12174. doi: 10.1073/pnas.1412608111
- Molnár B, Galamb O, Kalmár A, et al. Circulating cell-free nucleic acids as biomarkers in colorectal cancer screening and diagnosis - an update. Expert Rev Mol Diagn. 2019;19(6):477-498. doi: 10.1080/14737159.2019.1613891
- Koscianska E, Starega-Roslan J, Sznajder LJ, Olejniczak M, Galka-Marciniak P, Krzyzosiak WJ. Northern blotting analysis of microRNAs, their precursors and RNA interference triggers. BMC Mol Biol. 2011;12:14. doi: 10.1186/1471-2199-12-14
- Jaksik R, Drobna-Śledzińska M, Dawidowska M. RNA-seq library preparation for comprehensive transcriptome analysis in cancer cells: The impact of insert size. Genomics. 2021;113(6):4149-4162. doi: 10.1016/j.ygeno.2021.10.018
- Hong LZ, Zhou L, Zou R, et al. Systematic evaluation of multiple qPCR platforms, NanoString and miRNA-Seq for microRNA biomarker discovery in human biofluids. Sci Rep. 2021;11(1):4435. doi: 10.1038/s41598-021-83365-z
- Dave VP, Ngo TA, Pernestig AK, et al. MicroRNA amplification and detection technologies: Opportunities and challenges for point of care diagnostics. Lab Invest. 2019;99(4):452-469. doi: 10.1038/s41374-018-0143-3