Theta rhythm as a real-time quantitative marker for non-invasive analysis of adult neurogenesis in the intact brain

Background: Adult neurogenesis is a regenerative mechanism of the brain that contributes to neuroplasticity and memory consolidation. Aberrant neurogenesis is considered a key pathogenic hallmark of a wide array of neurocognitive disorders. While the functional significance of adult neurogenesis is well established in most experimental and wild animals, its occurrence in the aging human brain remains uncertain. Objective: Most studies on adult neurogenesis in humans rely on post-mortem analysis, as there is currently no method to accurately evaluate the neurogenic process in the intact brain. Theta rhythm, a neural oscillatory pattern, is believed to originate from hippocampal place cells that play a crucial role in creating cognitive maps. Theta rhythm is positively modulated by various factors, such as physical activities and enriched environment, which also promote adult neurogenesis. The strength and stability of theta rhythm are closely linked to mental well-being and cognitive functions, while its disruptions serve as indicators of neuropathogenic events that directly intersect with the regulation of adult neurogenesis. Conclusion: Modulation of the theta rhythm may reciprocally reflect the degree of neurogenesis in the adult brain, as newborn neurons can directly integrate with place cells, especially in the hippocampus. Given their electrophysical properties, newborn neurons may hold an intrinsic potential to generate theta rhythm upon motor sensory inputs and different neural activities. Biomedical tools such as electroencephalography, which measures theta rhythm, could thus be utilized to non-invasively monitor ongoing neurogenic processes in intact brains. Consequently, theta rhythm may function as a potential real-time, quantitative marker of adult neurogenesis.
- Ming GL, Song H. Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron. 2011;70(4):687-702. doi: 10.1016/j.neuron.2011.05.001
- Jurkowski MP, Bettio L, Woo EK, Patten A, Yau SY, Gil-Mohapel J. Beyond the hippocampus and the SVZ: Adult neurogenesis throughout the brain. Front Cell Neurosci. 2020;14:576444. doi: 10.3389/fncel.2020.576444
- Rethinavel HS, Ravichandran S, Radhakrishnan RK, Kandasamy M. COVID-19 and parkinson’s disease: Defects in neurogenesis as the potential cause of olfactory system impairments and anosmia. J Chem Neuroanat. 2021;115:101965. doi: 10.1016/j.jchemneu.2021.101965
- Kandasamy M, Lehner B, Kraus S, et al. TGF-beta signalling in the adult neurogenic niche promotes stem cell quiescence as well as generation of new neurons. J Cell Mol Med. 2014;18(7):1444-1459. doi: 10.1111/jcmm.12298
- Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: Five decades later. Cell Stem Cell. 2015;17(4):385-395. doi: 10.1016/j.stem.2015.09.003
- Fontán-Lozano Á, Morcuende S, Davis-López De Carrizosa MA, Benítez-Temiño B, Mejías R, Matarredona ER. To become or not to become tumorigenic: Subventricular zone versus hippocampal neural stem cells. Front Oncol. 2020;10:602217. doi: 10.3389/fonc.2020.602217
- Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH. Regulation and function of adult neurogenesis: From genes to cognition. Physiol Rev. 2014;94(4):991-1026. doi: 10.1152/physrev.00004.2014
- Lazarov O, Hollands C. Hippocampal neurogenesis: Learning to remember. Prog Neurobiol. 2016;138-140:1-18. doi: 10.1016/j.pneurobio.2015.12.006
- Roshan SA, Elangovan G, Gunaseelan D, Jayachandran SK, Kandasamy M, Anusuyadevi M. Pathogenomic signature and aberrant neurogenic events in experimental cerebral ischemic stroke: A neurotranscriptomic-based implication for dementia. J Alzheimers Dis. 2023;94(Suppl 1):S289-S308. doi: 10.3233/JAD-220831
- Kandasamy M, Anusuyadevi M, Aigner KM, et al. TGF-β signaling: A therapeutic target to reinstate regenerative plasticity in vascular dementia? Aging Dis. 2020;11(4):828-850. doi: 10.14336/AD.2020.0222
- Irakkam MPBD, Joseph JHM, Kandasamy M. Aberrant hippocampal neuroregenerative plasticity in schizophrenia: Reactive neuroblastosis as a possible pathocellular mechanism of hallucination. Neurosignals. 2024;31(1):1-25. doi: 10.33594/000000712
- Amrein I. Adult hippocampal neurogenesis in natural populations of mammals. Cold Spring Harb Perspect Biol. 2015;7(5):a021295. doi: 10.1101/cshperspect.a021295
- Kempermann G, Gage FH, Aigner L, et al. Human adult neurogenesis: Evidence and remaining questions. Cell Stem Cell. 2018;23(1):25-30. doi: 10.1016/j.stem.2018.04.004
- Sorrells SF, Paredes MF, Cebrian-Silla A, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555(7696):377-381. doi: 10.1038/nature25975
- Leal-Galicia P, Chávez-Hernández ME, Mata F, et al. Adult neurogenesis: A story ranging from controversial new neurogenic areas and human adult neurogenesis to molecular regulation. Int J Mol Sci. 2021;22(21):11489. doi: 10.3390/ijms222111489
- Kumar A, Pareek V, Faiq MA, Ghosh SK, Kumari C. Adult neurogenesis in humans: A review of basic concepts, history, current research, and clinical implications. Innov Clin Neurosci. 2019;16(5-6):30-37.
- Korotkova T, Ponomarenko A, Monaghan CK, et al. Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neurosci Biobehav Rev. 2018;85:65-80. doi: 10.1016/j.neubiorev.2017.09.004
- Buzsáki G. Theta oscillations in the hippocampus. Neuron. 2002;33(3):325-340. doi: 10.1016/S0896-6273(02)00586-X
- Eichenbaum H, Dudchenko P, Wood E, Shapiro M, Tanila H. The hippocampus, memory, and place cells: Is it spatial memory or a memory space? Neuron. 1999;23(2):209-226. doi: 10.1016/S0896-6273(00)80773-4
- O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34(1):171-175. doi: 10.1016/0006-8993(71)90358-1
- Winson J. Patterns of hippocampal theta rhythm in the freely moving rat. Electroencephalogr Clin Neurophysiol. 1974;36(3):291-301. doi: 10.1016/0013-4694(74)90171-0
- Grossberg S. A neural model of intrinsic and extrinsic hippocampal theta rhythms: Anatomy, neurophysiology, and function. Front Syst Neurosci. 2021;15:665052. doi: 10.3389/fnsys.2021.665052
- Nuñez A, Buño W. The theta rhythm of the hippocampus: From neuronal and circuit mechanisms to behavior. Front Cell Neurosci. 2021;15:649262. doi: 10.3389/fncel.2021.649262
- Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol. 1969;26(4):407-418. doi: 10.1016/0013-4694(69)90092-3
- Whishaw IQ, Vanderwolf CH. Hippocampal EEG and behavior: Changes in amplitude and frequency of RSA (theta rhythm) associated with spontaneous and learned movement patterns in rats and cats. Behav Biol. 1973;8(4):461-484. doi: 10.1016/s0091-6773(73)80041-0
- Ravichandran S, Suhasini R, Madheswaran Deepa S, et al. Intertwining neuropathogenic impacts of aberrant circadian rhythm and impaired neuroregenerative plasticity in huntington’s disease: Neurotherapeutic significance of chemogenetics. J Mol Pathol. 2022;3(4):355-371. doi: 10.3390/jmp3040030
- Yang RH, Hou XH, Xu XN, et al. Sleep deprivation impairs spatial learning and modifies the hippocampal theta rhythm in rats. Neuroscience. 2011;173:116-123. doi: 10.1016/j.neuroscience.2010.11.004
- Li JY, Kuo TBJ, Hung CT, Yang CCH. Voluntary exercise enhances hippocampal theta rhythm and cognition in the rat. Behav Brain Res. 2021;399:112916. doi: 10.1016/j.bbr.2020.112916
- Zheng J, Peng S, Cui L, et al. Enriched environment attenuates hippocampal theta and gamma rhythms dysfunction in chronic cerebral hypoperfusion via improving imbalanced neural afferent levels. Front Cell Neurosci. 2023;17:985246. doi: 10.3389/fncel.2023.985246
- Baijal S, Srinivasan N. Theta activity and meditative states: Spectral changes during concentrative meditation. Cogn Process. 2010;11(1):31-38. doi: 10.1007/s10339-009-0272-0
- Fukui H, Toyoshima K. Music facilitate the neurogenesis, regeneration and repair of neurons. Med Hypotheses. 2008;71(5):765-769. doi: 10.1016/j.mehy.2008.06.019
- Siwek ME, Müller R, Henseler C, et al. Altered theta oscillations and aberrant cortical excitatory activity in the 5XFAD model of alzheimer’s disease. Neural Plast. 2015;2015:781731. doi: 10.1155/2015/781731
- Radhakrishnan RK, Kandasamy M. SARS-CoV-2-mediated neuropathogenesis, deterioration of hippocampal neurogenesis and dementia. Am J Alzheimers Dis Other Demen. 2022;37:15333175221078418. doi: 10.1177/15333175221078418
- Deng W, Aimone JB, Gage FH. New neurons and new memories: How does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci. 2010;11(5):339-350. doi: 10.1038/nrn2822
- Ojha P. Berger and the breakthrough: A centennial celebration of the human electroencephalogram. Neurodiagn J. 2024;64(2):69-74. doi: 10.1080/21646821.2024.2327268
- Snipes S, Krugliakova E, Meier E, Huber R. The theta paradox: 4-8 Hz EEG oscillations reflect both sleep pressure and cognitive control. J Neurosci. 2022;42(45):8569-8586. doi: 10.1523/JNEUROSCI.1063-22.2022
- Buzsáki G, Moser EI. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci. 2013;16(2):130-138. doi: 10.1038/nn.3304
- Jung R, Kornmüller AE. Eine methodik der ableitung iokalisierter potentialschwankungen aus subcorticalen hirngebieten. Eur Arch Psychiatry Clin Neorosci. 1938;109(1):1-30. doi: 10.1007/BF02157817
- Green JD, Arduini AA. Hippocampal electrical activity in arousal. J Neurophysiol. 1954;17(6):533-557. doi: 10.1152/jn.1954.17.6.533
- Király B, Domonkos A, Jelitai M, et al. The medial septum controls hippocampal supra-theta oscillations. Nat Commun. 2023;14(1):6159. doi: 10.1038/s41467-023-41746-0
- Konopacki J. Theta-like activity in the limbic cortex in vitro. Neurosci Biobehav Rev. 1998;22(2):311-323. doi: 10.1016/s0149-7634(97)00017-1
- Hasselmo ME, Bodelón C, Wyble BP. A proposed function for hippocampal theta rhythm: Separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 2002;14(4):793-817. doi: 10.1162/089976602317318965
- Shuman T, Amendolara B, Golshani P. Theta rhythmopathy as a cause of cognitive disability in TLE. Epilepsy Curr. 2017;17(2):107-111. doi: 10.5698/1535-7511.17.2.107
- McNaughton N, Ruan M, Woodnorth MA. Restoring theta-like rhythmicity in rats restores initial learning in the morris water maze. Hippocampus. 2006;16(12):1102-1110. doi: 10.1002/hipo.20235
- Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci. 2019;13:363. doi: 10.3389/fncel.2019.00363
- Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci . 2015;11(6):1164-1178. doi: 10.5114/aoms.2015.56342
- Kohl Z, Kandasamy M, Winner B, et al. Physical activity fails to rescue hippocampal neurogenesis deficits in the R6/2 mouse model of huntington’s disease. Brain Res. 2007;1155:24-33. doi: 10.1016/j.brainres.2007.04.039
- Edelmann E, Cepeda-Prado E, Franck M, Lichtenecker P, Brigadski T, Leßmann V. Theta burst firing recruits BDNF release and signaling in postsynaptic CA1 neurons in spike-timing-dependent LTP. Neuron. 2015;86(4):1041-1054. doi: 10.1016/j.neuron.2015.04.007
- Sackeim HA, Luber B, Katzman GP, et al. The effects of electroconvulsive therapy on quantitative electroencephalograms. Relationship to clinical outcome. Arch Gen Psychiatry. 1996;53(9):814-824. doi: 10.1001/archpsyc.1996.01830090060009
- Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingström A. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry. 2000;47(12): 1043-1049. doi: 10.1016/s0006-3223(00)00228-6
- Rotheneichner P, Lange S, O’Sullivan A, et al. Hippocampal neurogenesis and antidepressive therapy: Shocking relations. Neural Plast. 2014;2014:723915. doi: 10.1155/2014/723915
- Tambini A, Nee DE, D’Esposito M. Hippocampal-targeted theta-burst stimulation enhances associative memory formation. J Cogn Neurosci. 2018;30(10):1452-1472. doi: 10.1162/jocn-a-01300
- Scarcelli T, Jordão JF, O’Reilly MA, Ellens N, Hynynen K, Aubert I. Stimulation of hippocampal neurogenesis by transcranial focused ultrasound and microbubbles in adult mice. Brain Stimul. 2014;7(2):304-307. doi: 10.1016/j.brs.2013.12.012
- Abe Y, Toyosawa K. Age-related changes in rat hippocampal theta rhythms: A difference between type 1 and type 2 theta. J Vet Med Sci. 1999;61(5):543-548. doi: 10.1292/jvms.61.543
- Erickson KI, Prakash RS, Voss MW, et al. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J Neurosci. 2010;30(15):5368. doi: 10.1523/JNEUROSCI.6251-09.2010
- Zhang Y, Lei L, Liu Z, et al. Theta oscillations: A rhythm difference comparison between major depressive disorder and anxiety disorder. Front Psychiatry. 2022;13:827536. doi: 10.3389/fpsyt.2022.827536
- DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14(1):32. doi: 10.1186/s13024-019-0333-5
- Berg M Van Den, Toen D, Verhoye M, Keliris GA. Alterations in theta-gamma coupling and sharp wave-ripple, signs of prodromal hippocampal network impairment in the TgF344- AD rat model. Front Aging Neurosci. 2023;15:1081058. doi: 10.3389/fnagi.2023.1081058
- Bhattacharya BS, Coyle D, Maguire LP. Alpha and theta rhythm abnormality in Alzheimer’s disease: A study using a computational model. Adv Exp Med Biol. 2011;718:57-73. doi: 10.1007/978-1-4614-0164-3-6
- Manickam N, Radhakrishnan RK, Vergil Andrews JF, Selvaraj DB, Kandasamy M. Cell cycle re-entry of neurons and reactive neuroblastosis in Huntington’s disease: Possibilities for neural-glial transition in the brain. Life Sci. 2020;263:118569. doi: 10.1016/j.lfs.2020.118569
- Kandasamy M, Aigner L. Reactive neuroblastosis in Huntington’s disease: A putative therapeutic target for striatal regeneration in the adult brain. Front Cell Neurosci. 2018;12:37. doi: 10.3389/fncel.2018.00037
- Jin K, Peel AL, Mao XO, et al. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2003;101(1):343-347. doi: 10.1073/pnas.2634794100
- Cao Y, Han C, Peng X, et al. Correlation between resting theta power and cognitive performance in patients with schizophrenia. Front Hum Neurosci. 2022;16:853994.
- Amaral DG, Scharfman HE, Lavenex P. The dentate gyrus: Fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res. 2007;163:3-22. doi: 10.1016/S0079-6123(07)63001-5
- Kwon O, Feng L, Druckmann S, Kim J. Schaffer collateral inputs to CA1 excitatory and inhibitory neurons follow different connectivity rules. J Neurosci. 2018;38(22): 5140-5152. doi: 10.1523/JNEUROSCI.0155-18.2018
- Dong C, Madar AD, Sheffield MEJ. Distinct place cell dynamics in CA1 and CA3 encode experience in new environments. Nat Commun. 2021;12(1):2977. doi: 10.1038/s41467-021-23260-3
- Ramirez JM, Tryba AK, Peña F. Pacemaker neurons and neuronal networks: An integrative view. Curr Opin Neurobiol. 2004;14(6):665-674. doi: 10.1016/j.conb.2004.10.011
- Hummos A, Nair SS. An integrative model of the intrinsic hippocampal theta rhythm. PLoS One. 2017;12(8):e0182648. doi: 10.1371/journal.pone.0182648
- Kempermann G, Song H, Gage FH. Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol. 2015;7(9):a018812. doi: 10.1101/cshperspect.a018812
- Gilbert PE, Brushfield AM. The role of the CA3 hippocampal subregion in spatial memory: A process oriented behavioral assessment. Prog Neuro-Psychopharmacol Biol Psychiatry. 2009;33(5):774-781. doi: 10.1016/j.pnpbp.2009.03.037
- Sun Y, Nguyen A, Nguyen JP, et al. Cell-type-specific circuit connectivity of hippocampal CA1 revealed through Cre-dependent rabies tracing. Cell Rep. 2014;7(1):269-280. doi: 10.1016/j.celrep.2014.02.030
- Ho NF, Hooker JM, Sahay A, Holt DJ, Roffman JL. In vivo imaging of adult human hippocampal neurogenesis: Progress, pitfalls and promise. Mol psychiatry. 2013;18(4):404-416. doi: 10.1038/mp.2013.8
- Light GA, Williams LE, Minow F, et al. Electroencephalography (EEG) and event-related potentials (ERPs) with human participants. Curr Protoc Neurosci. 2010; Chapter 6:Unit 6.25.1-24. doi: 10.1002/0471142301.ns0625s52
- Liu Z, Ding L, He B. Integration of EEG/MEG with MRI and fMRI in functional neuroimaging. IEEE Eng Med Biol Mag. 2006;25(4):46-53. doi: 10.1109/memb.2006.1657787
- Rahsepar B, Norman JF, Noueihed J, et al. Theta-phase-specific modulation of dentate gyrus memory neurons. Elife. 2023;12:e82697. doi: 10.7554/eLife.82697
- Lei B, Kang B, Hao Y, et al. Reconstructing a new hippocampal engram for systems reconsolidation and remote memory updating. Neuron. 2025;113(3):471-485.e6. doi: 10.1016/j.neuron.2024.11.010
- Lacefield CO, Itskov V, Reardon T, Hen R, Gordon JA. Effects of adult-generated granule cells on coordinated network activity in the dentate gyrus. Hippocampus. 2012;22(1): 106-116. doi: 10.1002/hipo.20860
- Pernía-Andrade AJ, Jonas P. Theta-gamma-modulated synaptic currents in hippocampal granule cells in vivo define a mechanism for network oscillations. Neuron. 2014;81(1):140-152. doi: 10.1016/j.neuron.2013.09.046
- Rendeiro C, Rhodes JS. A new perspective of the hippocampus in the origin of exercise-brain interactions. Brain Struct Funct. 2018;223(6):2527-2545. doi: 10.1007/s00429-018-1665-6
- Klempin F, Kronenberg G, Cheung G, Kettenmann H, Kempermann G. Properties of doublecortin-(DCX)-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice. PLoS One. 2011;6(10):e25760. doi: 10.1371/journal.pone.0025760
- Kandasamy M, Yesudhas A, Poornimai Abirami GP, et al. Genetic reprogramming of somatic cells into neuroblasts through a co-induction of the doublecortin gene along the yamanaka factors: A promising approach to model neuroregenerative disorders. Med Hypotheses. 2019;127:105-111. doi: 10.1016/j.mehy.2019.04.006
- Shin J, Kim D, Bianchi R, Wong RKS, Shin HS. Genetic dissection of theta rhythm heterogeneity in mice. Proc Natl Acad Sci U S A. 2005;102(50):18165-18170. doi: 10.1073/pnas.0505498102
- Manning EE, Ransome MI, Burrows EL, Hannan AJ. Increased adult hippocampal neurogenesis and abnormal migration of adult-born granule neurons is associated with hippocampal-specific cognitive deficits in phospholipase C-β1 knockout mice. Hippocampus. 2012;22(2):309-319. doi: 10.1002/hipo.20900
- Kowalczyk T, Staszelis A, Kaźmierska-Grębowska P, Tokarski K, Caban B. The role of the posterior hypothalamus in the modulation and production of rhythmic theta oscillations. Neuroscience. 2021;470:100-115. doi: 10.1016/j.neuroscience.2021.07.001
- Rojas-Líbano D, Frederick DE, Egaña JI, Kay LM. The olfactory bulb theta rhythm follows all frequencies of diaphragmatic respiration in the freely behaving rat. Front Behav Neurosci. 2014;8:214. doi: 10.3389/fnbeh.2014.00214
- Kay LM. Theta oscillations and sensorimotor performance. Proc Natl Acad Sci U S A. 2005;102(10):3863-3868. doi: 10.1073/pnas.0407920102
- Lee DA, Blackshaw S. Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci. 2012;30(8):615-621. doi: 10.1016/j.ijdevneu.2012.07.003