AccScience Publishing / JBM / Online First / DOI: 10.14440/jbm.2024.0050
MINI-REVIEW

Advancements in analytical methods for studying the human gut microbiome

Gijsbert J. Jansen1 Gerard P. Schouten1 Marit Wiersma1*
Show Less
1 NL-Lab, Biotrack, Leeuwarden, Friesland, 8912 AP, Netherlands
Submitted: 31 July 2024 | Revised: 20 September 2024 | Accepted: 10 October 2024 | Published: 18 November 2024
© 2024 by the Journal of Biological Methods published by POL Scientific. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Background: The human gut microbiome, a complex ecosystem of microorganisms, plays a crucial role in maintaining human health. Perturbations in its composition are linked to a wide range of health conditions. Analytical techniques: Researchers employ various techniques to study the gut microbiome, each having its own strengths and limitations. Polymerase chain reaction (PCR) is highly sensitive but dependent on the quality of DNA extraction. Next-generation sequencing (NGS) is powerful but can be costly and requires extensive data analysis. Furthermore, the accuracy of NGS results also depends heavily on the quality of the DNA extraction process. Culture methods, while useful, are biased and time-consuming. Fluorescence in situ hybridization (FISH) excels in visualizing specific microbial populations and is the only method capable of providing in situ information. However, until recently, FISH was heavily reliant on human interpretation of digital photomicrographs, limiting its application in high-throughput strategies. Additionally, the sensitivity of FISH is restricted by the number of cells visualized. Conclusion: Understanding the strengths and weaknesses of these methods is essential for drawing robust conclusions in microbiome research.

Keywords
Culturing
Fluorescence in situ hybridization
Gut microbiome
Next-generation sequencing
Polymerase chain reaction
Funding
None.
Conflict of interest
Authors Gijsbert J. Jansen, Gerard P. Schouten, and Marit Wiersma are employed by the commercial company Biotrack, NL-Lab, and utilize the FISH technique. They hold patents issued (WO 2010/040371 A1, EP 08874964.3). This does not influence the authors’ adherence to the journal’s policies.
References
[1]
  1. Manor O, Dai CL, Kornilov SA, et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun. 2020;11(1):5206. doi: 10.1038/s41467-020-18871-1

 

  1. Geng J, Ni Q, Sun W, Li L, Feng X. The links between gut microbiota and obesity and obesity related diseases. Biomed Pharmacother. 2022;147:112678. doi: 10.1016/j.biopha.2022.112678

 

  1. Rashed R, Valcheva R, Dieleman LA. Manipulation of gut microbiota as a key target for Crohn’s disease. Front Med (Lausanne). 2022;9:887044. doi: 10.3389/fmed.2022.887044

 

  1. Radjabzadeh D, Bosch JA, Uitterlinden AG, et al. Gut microbiome-wide association study of depressive symptoms. Nat Commun. 2022;13(1):7128. doi: 10.1038/s41467-022-34502-3

 

  1. Lagier JC, Khelaifia S, Alou MT, et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol. 2016;1(12):16203. doi: 10.1038/nmicrobiol.2016.203

 

  1. Kwok LY, Zhang J, Guo Z, et al. Characterization of fecal microbiota across seven Chinese ethnic groups by quantitative polymerase chain reaction. PLoS One. 2014;9(4):e93631. doi: 10.1371/journal.pone.0093631

 

  1. Jian C, Luukkonen P, Yki-Järvinen H, Salonen A, Korpela K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS One. 2020;15(1):e0227285. doi: 10.1371/journal.pone.0227285

 

  1. Jeong J, Mun S, Oh Y, et al. A qRT-PCR method capable of quantifying specific microorganisms compared to NGS-based metagenome profiling data. Microorganisms. 2022;10(2):324. doi: 10.3390/microorganisms10020324

 

  1. Naccache SN, Federman S, Veeraraghavan N, et al. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res. 2014;24(7):1180-1192. doi: 10.1101/gr.171934.113

 

  1. Gao B, Chi L, Zhu Y, et al. An introduction to next generation sequencing bioinformatic analysis in gut microbiome studies. Biomolecules. 2021;11(4):530. doi: 10.3390/biom11040530

 

  1. Welling GW, Wildeboer-Veloo ACM, Lemmers NWM, et al. Fluorescent in situ hybridization (FISH) as a tool in intestinal bacteriology. Biosci Microflora. 2002;20(4):115-120. doi: 10.12938/bifidus1996.20.115

 

  1. Yang B, Wang Y, Qian PY. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics. 2016;17(1):135. doi: 10.1186/s12859-016-0992-y

 

  1. Johnson JS, Spakowicz DJ, Hong BY, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10(1):5029. doi: 10.1038/s41467-019-13036-1

 

  1. Louis S, Tappu RM, Damms-Machado A, Huson DH, Bischoff SC. Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLoS One. 2016;11(2):e0149564. doi: 10.1371/journal.pone.0149564

 

  1. Tropini C, Earle KA, Huang KC, Sonnenburg JL. The gut microbiome: Connecting spatial organization to function. Cell Host Microbe. 2017;21(4):433-442. doi: 10.1016/j.chom.2017.03.010

 

  1. Videnska P, Smerkova K, Zwinsova B, et al. Stool sampling and DNA isolation kits affect DNA quality and bacterial composition following 16S rRNA gene sequencing using MiSeq Illumina platform. Sci Rep. 2019;9(1):13837. doi: 10.1038/s41598-019-49520-3

 

  1. Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 2012;22(5):939-946. doi: 10.1101/gr.128124.111

 

  1. Rintala A, Pietilä S, Munukka E, et al. Gut microbiota analysis results are highly dependent on the 16S rRNA gene target region, whereas the impact of DNA extraction is minor. J Biomol Tech. 2017;28(1):19-30. doi: 10.7171/jbt.17-2801-003

 

  1. Knierim E, Lucke B, Schwarz JM, Schuelke M, Seelow D. Systematic comparison of three methods for fragmentation of long-range PCR products for next generation sequencing. PLoS One. 2011;6(11):e28240. doi: 10.1371/journal.pone.0028240

 

  1. Moran NA, Ochman H, Hammer TJ. Evolutionary and ecological consequences of gut microbial communities. Annu Rev Ecol Evol Syst. 2019;50(1):451-475. doi: 10.1146/annurev-ecolsys-110617-062453

 

  1. Almeida C, Azevedo NF, Santos S, Keevil CW, Vieira MJ. Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS One. 2011;6(3):e14786. doi: 10.1371/journal.pone.0014786

 

  1. Zhang J, Li C, Rahaman MM, et al. A comprehensive review of image analysis methods for microorganism counting: From classical image processing to deep learning approaches. Artif Intell Rev. 2022;55(4):2875-2944. doi: 10.1007/s10462-021-10082-4

 

  1. Nordmann P, Jayol A, Poirel L. A universal culture medium for screening polymyxin-resistant gram-negative isolates. J Clin Microbiol. 2016;54(5):1395-1399. doi: 10.1128/JCM.00446-16

 

  1. Ganji L, Azimirad M, Farzi N, et al. Comparison of the detection limits of the culture and PCR methods for the detection of Clostridium difficile, Clostridium perfringens, Campylobacter jejuni, and Yersinia enterocolitica in human stool. Arch Pediatr Infect Dis. 2016;5(1):e38888. doi: 10.5812/pedinfect.38888

 

  1. Holland JL, Louie L, Simor AE, Louie M. PCR detection of Escherichia coli O157:H7 directly from stools: Evaluation of commercial extraction methods for purifying fecal DNA. J Clin Microbiol. 2000;38(11):4108-4113. doi: 10.1128/JCM.38.11.4108-4113.2000

 

  1. Madajczak G, Szych J, Wójcik B, Mąka Ł, Formińska K. Validation of direct plating of a stool sample as a method for Listeria monocytogenes detection. Ann Agric Environ Med. 2012;19(1):69-74.

 

  1. Bloedt K, Riecker M, Poppert S, Wellinghausen N. Evaluation of new selective culture media and a rapid fluorescence in situ hybridization assay for identification of Clostridium difficile from stool samples. J Med Microbiol. 2009;58(7):874-877. doi: 10.1099/jmm.0.009811-0

 

  1. Bergmans DC, Bonten MJ, De Leeuw PW, Stobberingh EE. Reproducibility of quantitative cultures of endotracheal aspirates from mechanically ventilated patients. J Clin Microbiol. 1997;35(3):796-798. doi: 10.1128/jcm.35.3.796-798.1997

 

  1. Almeida C, Azevedo NF, Fernandes RM, Keevil CW, Vieira MJ. Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Salmonella spp. in a broad spectrum of samples. Appl Environ Microbiol. 2010;76(13):4476-4485. doi: 10.1128/AEM.01678-09

 

  1. Mokhtari W, Nsaibia S, Gharbi A, Aouni M. Real-time PCR using SYBR Green for the detection of Shigella spp. in food and stool samples. Mol Cell Probes. 2013;27(1):53-59. doi: 10.1016/j.mcp.2012.09.002

 

  1. Bennett S, Gunson RN. The development of a multiplex real-time RT-PCR for the detection of adenovirus, astrovirus, rotavirus and sapovirus from stool samples. J Virol Methods. 2017;242:30-34. doi: 10.1016/j.jviromet.2016.12.016

 

  1. Van den Berg RJ, Kuijper EJ, van Coppenraet LES, Claas ECJ. Rapid diagnosis of toxinogenic Clostridium difficile in faecal samples with internally controlled real-time PCR. Clin Microbiol Infect. 2006;12(2):184-186. doi: 10.1111/j.1469-0691.2005.01301.x

 

  1. Song Y, Liu C, Finegold SM. Real-time PCR quantitation of Clostridia in Feces of autistic children. Appl Environ Microbiol. 2004;70(11):6459-6465. doi: 10.1128/AEM.70.11.6459-6465.2004

 

  1. Senchyna F, Gaur RL, Gombar S, Truong CY, Schroeder LF, Banaei N. Clostridium difficile PCR cycle threshold predicts free toxin. J Clin Microbiol. 2017;55(9):2651-2660. doi: 10.1128/JCM.00563-17

 

  1. Sjöberg F, Nookaew I, Yazdanshenas S, Gio-Batta M, Adlerberth I, Wold AE. Are all faecal bacteria detected with equal efficiency? A study using next-generation sequencing and quantitative culture of infants’ faecal samples. J Microbiol Methods. 2020;177:106018. doi: 10.1016/j.mimet.2020.106018

 

  1. Panek M, Čipčić Paljetak H, Barešić A, et al. Methodology challenges in studying human gut microbiota - effects of collection, storage, DNA extraction and next generation sequencing technologies. Sci Rep. 2018;8(1):5143. doi: 10.1038/s41598-018-23296-4

 

  1. Roume H, Mondot S, Saliou A, Le Fresne-Languille S, Doré J. Multicenter evaluation of gut microbiome profiling by next-generation sequencing reveals major biases in partial-length metabarcoding approach. Sci Rep. 2023;13(1):22593. doi: 10.1038/s41598-023-46062-7

 

  1. Swidsinski A, Dörffel Y, Loening-Baucke V, et al. Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet. Front Microbiol. 2017;8:1141. doi: 10.3389/fmicb.2017.01141

 

  1. Schwiertz A, Le Blay G, Blaut M. Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol. 2000;66(1):375-382. doi: 10.1128/AEM.66.1.375-382.2000

 

  1. Harmsen HJM, Gibson GR, Elfferich P, et al. Comparison of viable cell counts and fluorescence in situ hybridization using specific rRNA-based probes for the quantification of human fecal bacteria. FEMS Microbiol Lett. 2000;183(1):125-129. doi: 10.1111/j.1574-6968.2000.tb08945.x

 

  1. Tamminga GG, Paulitsch-Fuchs AH, Jansen GJ, Euverink GJW. Development and validation of an alternative parameter for quantification of signals emitted by fluorescently labelled bacteria in microscopic images. J Microbiol Methods. 2019;166:105717. doi: 10.1016/j.mimet.2019.105717

 

  1. Lippmann T, Braubach P, Ettinger M, Kuehnel M, Laenger F, Jonigk D. Fluorescence in situ hybridization (FISH) for the diagnosis of periprosthetic joint infection in formalin-fixed paraffin-embedded surgical tissues. J Bone Joint Surg. 2019;101(2):e5. doi: 10.2106/JBJS.18.00243
Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific