A system for the high-throughput analysis of acute thermal avoidance and adaptation in C. elegans
Nociception and its plasticity are essential biological processes controlling adaptive behavioral responses in animals. These processes are also linked to different pain conditions in human and have received considerable attention, notably via studies in rodent models and the use of heat-evoked withdrawal behavior assays as a readout of unpleasant experience. More recently, invertebrates have also emerged as useful complementary models, with their own set of advantages, including their amenability to genetic manipulations, the accessibility and relative simplicity of their nervous system and ethical concerns linked to animal suffering. Like humans, the nematode Caenorhabditis elegans (C. elegans) can detect noxious heat and produce avoidance responses such as reversals. Here, we present a methodology suitable for the high-throughput analysis of C. elegans heat-evoked reversals and the adaptation to repeated stimuli. We introduce two platforms: the INFERNO (for infrared-evoked reversal analysis platform), allowing the quantification of the thermal sensitivity in a petri dish containing a large population (> 100 animals), and the ThermINATOR (for thermal adaptation multiplexed induction platform), allowing the mass-adaptation of up to 18 worm populations at the same time. We show that wild type animals progressively desensitize in response to repeated noxious heat pulses. Furthermore, analyzing the phenotype of mutant animals, we show that the mechanisms underlying baseline sensitivity and adaptation, respectively, are supported by genetically separable molecular pathways. In conclusion, the presented method enables the high-throughput evaluation of thermal avoidance in C. elegans and will contribute to accelerate studies in the field with this invertebrate model.
1. Burrell BD. Comparative biology of pain: What invertebrates can tell us about how nociception works. J Neurophysiol. 2017;117(4):1461-73. Epub 2017/01/04. doi: 10.1152/jn.00600.2016. PubMed PMID: 28053241.
2. Walters ET. Nociceptive Biology of Molluscs and Arthropods: Evolutionary Clues About Functions and Mechanisms Potentially Related to Pain. 2018;9(1049). doi: 10.3389/fphys.2018.01049.
3. St. John Smith E. Advances in understanding nociception and neuropathic pain. Journal of Neurology. 2018;265(2):231-8. doi: 10.1007/s00415-017-8641-6.
4. Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA. An overview of animal models of pain: disease models and outcome measures. The journal of pain : official journal of the American Pain Society. 2013;14(11):1255-69. Epub 2013/09/17. doi: 10.1016/j.jpain.2013.06.008. PubMed PMID: 24035349; PubMed Central PMCID: PMCPMC3818391.
5. D'amour FE, Smith DL. A method for determining loss of pain sensation. J Pharmacol Exp Ther. 1941;72(1):74-9. PubMed PMID: WOS:000202440400003.
6. O'Callaghan JP, Holtzman SG. Quantification of the analgesic activity of narcotic antagonists by a modified hot-plate procedure. J Pharmacol Exp Ther. 1975;192(3):497-505. Epub 1975/03/01. PubMed PMID: 1168252.
7. Woolfe G, Macdonald AD. The evaluation of the analgesic action of Pethidine hydrochloride (Demerol). J Pharmacol Exp Ther. 1944;80(3):300-7. PubMed PMID: WOS:000202500600012.
8. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A New and Sensitive Method for Measuring Thermal Nociception in Cutaneous Hyperalgesia. Pain. 1988;32(1):77-88. doi: Doi 10.1016/0304-3959(88)90026-7. PubMed PMID: WOS:A1988L777300011.
9. Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat Med. 2010;16(11):1248-57. Epub 2010/10/16. doi: 10.1038/nm.2235. PubMed PMID: 20948530; PubMed Central PMCID: PMCPMC5022111.
10. Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest. 2010;120(11):3760-72. doi: 10.1172/Jci42843. PubMed PMID: WOS:000283621800005.
11. Im SH, Galko MJ. Pokes, sunburn, and hot sauce: Drosophila as an emerging model for the biology of nociception. Developmental dynamics : an official publication of the American Association of Anatomists. 2012;241(1):16-26. Epub 2011/09/21. doi: 10.1002/dvdy.22737. PubMed PMID: 21932321; PubMed Central PMCID: PMCPMC3258975.
12. Tobin DM, Bargmann CI. Invertebrate nociception: behaviors, neurons and molecules. Journal of neurobiology. 2004;61(1):161-74. Epub 2004/09/14. doi: 10.1002/neu.20082. PubMed PMID: 15362159.
13. Komuniecki R, Harris G, Hapiak V, Wragg R, Bamber B. Monoamines activate neuropeptide signaling cascades to modulate nociception in C. elegans: a useful model for the modulation of chronic pain? Invertebrate neuroscience : IN. 2012;12(1):53-61. Epub 2011/12/07. doi: 10.1007/s10158-011-0127-0. PubMed PMID: 22143253.
14. White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 1986;314(1165):1-340. Epub 1986/11/12. doi: 10.1098/rstb.1986.0056. PubMed PMID: 22462104.
15. Corsi AK, Wightman B, Chalfie M. A Transparent Window into Biology: A Primer on Caenorhabditis elegans. Genetics. 2015;200(2):387-407. doi: 10.1534/genetics.115.176099. PubMed PMID: 26088431.
16. Hobert O. Behavioral plasticity in C. elegans: paradigms, circuits, genes. Journal of neurobiology. 2003;54(1):203-23. Epub 2002/12/18. doi: 10.1002/neu.10168. PubMed PMID: 12486705.
17. Wittenburg N, Baumeister R. Thermal avoidance in Caenorhabditis elegans: an approach to the study of nociception. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(18):10477-82. Epub 1999/09/01. doi: 10.1073/pnas.96.18.10477. PubMed PMID: 10468634; PubMed Central PMCID: PMCPMC17914.
18. Glauser DA, Chen WC, Agin R, Macinnis BL, Hellman AB, Garrity PA, et al. Heat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans. Genetics. 2011;188(1):91-103. Epub 2011/03/04. doi: 10.1534/genetics.111.127100. PubMed PMID: 21368276; PubMed Central PMCID: PMCPMC3120139.
19. Oakes MD, Law WJ, Clark T, Bamber BA, Komuniecki R. Cannabinoids Activate Monoaminergic Signaling to Modulate Key C. elegans Behaviors. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2017;37(11):2859-69. Epub 2017/02/12. doi: 10.1523/jneurosci.3151-16.2017. PubMed PMID: 28188220; PubMed Central PMCID: PMCPMC5354331.
20. Oakes M, Law WJ, Komuniecki R. Cannabinoids Stimulate the TRP Channel-Dependent Release of Both Serotonin and Dopamine to Modulate Behavior in C. elegans. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2019;39(21):4142-52. Epub 2019/03/20. doi: 10.1523/jneurosci.2371-18.2019. PubMed PMID: 30886012; PubMed Central PMCID: PMCPMC6529862.
21. Leung K, Mohammadi A, Ryu WS, Nemenman I. Stereotypical Escape Behavior in Caenorhabditis elegans Allows Quantification of Effective Heat Stimulus Level. PLoS Comput Biol. 2016;12(12):e1005262-e. doi: 10.1371/journal.pcbi.1005262. PubMed PMID: 28027302.
22. Nieto-Fernandez F, Andrieux S, Idrees S, Bagnall C, Pryor SC, Sood R. The effect of opioids and their antagonists on the nocifensive response of Caenorhabditis elegans to noxious thermal stimuli. Invertebrate neuroscience : IN. 2009;9(3-4):195-200. Epub 2010/04/16. doi: 10.1007/s10158-010-0099-5. PubMed PMID: 20397037.
23. Schild LC, Glauser DA. Dynamic switching between escape and avoidance regimes reduces Caenorhabditis elegans exposure to noxious heat. Nat Commun. 2013;4:2198. Epub 2013/07/28. doi: 10.1038/ncomms3198. PubMed PMID: 23887613.
24. Glauser DA. How and why Caenorhabditis elegans uses distinct escape and avoidance regimes to minimize exposure to noxious heat. Worm. 2013;2(4):e27285. Epub 2014/04/20. doi: 10.4161/worm.27285. PubMed PMID: 24744986; PubMed Central PMCID: PMCPMC3988124.
25. Mohammadi A, Byrne Rodgers J, Kotera I, Ryu WS. Behavioral response of Caenorhabditis elegans to localized thermal stimuli. BMC neuroscience. 2013;14:66. Epub 2013/07/05. doi: 10.1186/1471-2202-14-66. PubMed PMID: 23822173; PubMed Central PMCID: PMCPMC3703451.
26. Ghosh R, Mohammadi A, Kruglyak L, Ryu WS. Multiparameter behavioral profiling reveals distinct thermal response regimes in Caenorhabditis elegans. BMC Biol. 2012;10:85-. doi: 10.1186/1741-7007-10-85. PubMed PMID: 23114012.
27. Glauser DA, Goodman MB. Molecules empowering animals to sense and respond to temperature in changing environments. Curr Opin Neurobiol. 2016;41:92-8. Epub 2016/09/23. doi: 10.1016/j.conb.2016.09.006. PubMed PMID: 27657982.
28. Schild LC, Zbinden L, Bell HW, Yu YV, Sengupta P, Goodman MB, et al. The balance between cytoplasmic and nuclear CaM kinase-1 signaling controls the operating range of noxious heat avoidance. Neuron. 2014;84(5):983-96. Epub 2014/12/04. doi: 10.1016/j.neuron.2014.10.039. PubMed PMID: 25467982; PubMed Central PMCID: PMCPMC4318703.
29. Yu YV, Bell HW, Glauser D, Van Hooser SD, Goodman MB, Sengupta P. CaMKI-dependent regulation of sensory gene expression mediates experience-dependent plasticity in the operating range of a thermosensory neuron. Neuron. 2014;84(5):919-26. Epub 2014/12/04. doi: 10.1016/j.neuron.2014.10.046. PubMed PMID: 25467978; PubMed Central PMCID: PMCPMC4258139.
30. Lim JP, Fehlauer H, Das A, Saro G, Glauser DA, Brunet A, et al. Loss of CaMKI Function Disrupts Salt Aversive Learning in C. elegans. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2018;38(27):6114-29. Epub 2018/06/08. doi: 10.1523/jneurosci.1611-17.2018. PubMed PMID: 29875264; PubMed Central PMCID: PMCPMC6031575.
31. Ardiel EL, McDiarmid TA, Timbers TA, Lee KCY, Safaei J, Pelech SL, et al. Insights into the roles of CMK-1 and OGT-1 in interstimulus interval-dependent habituation in Caenorhabditis elegans. Proceedings Biological sciences. 2018;285(1891). Epub 2018/11/16. doi: 10.1098/rspb.2018.2084. PubMed PMID: 30429311; PubMed Central PMCID: PMCPMC6253365.
32. Nkambeu B, Salem JB, Leonelli S, Marashi FA, Beaudry F. EGL-3 and EGL-21 are required to trigger nocifensive response of Caenorhabditis elegans to noxious heat. Neuropeptides. 2019;73:41-8. Epub 2018/11/21. doi: 10.1016/j.npep.2018.11.002. PubMed PMID: 30454862.
33. Swierczek NA, Giles AC, Rankin CH, Kerr RA. High-throughput behavioral analysis in C. elegans. Nature methods. 2011;8(7):592-8. Epub 2011/06/07. doi: 10.1038/nmeth.1625. PubMed PMID: 21642964; PubMed Central PMCID: PMCPMC3128206.
34. Goodman MB, Sengupta P. The extraordinary AFD thermosensor of C. elegans. Pflugers Arch. 2018;470(5):839-49. Epub 2017/12/08. doi: 10.1007/s00424-017-2089-5. PubMed PMID: 29218454.
35. Kimata T, Sasakura H, Ohnishi N, Nishio N, Mori I. Thermotaxis of C. elegans as a model for temperature perception, neural information processing and neural plasticity. Worm. 2012;1(1):31-41. doi: 10.4161/worm.19504. PubMed PMID: 24058821.
36. Kotera I, Tran NA, Fu D, Kim JH, Byrne Rodgers J, Ryu WS. Pan-neuronal screening in Caenorhabditis elegans reveals asymmetric dynamics of AWC neurons is critical for thermal avoidance behavior. Elife. 2016;5:e19021. doi: 10.7554/eLife.19021. PubMed PMID: 27849153.
37. Kimura Y, Corcoran EE, Eto K, Gengyo-Ando K, Muramatsu MA, Kobayashi R, et al. A CaMK cascade activates CRE-mediated transcription in neurons of Caenorhabditis elegans. EMBO Rep. 2002;3(10):962-6. Epub 2002/09/17. doi: 10.1093/embo-reports/kvf191. PubMed PMID: 12231504; PubMed Central PMCID: PMCPMC1307624.
38. Javer A, Currie M, Lee CW, Hokanson J, Li K, Martineau CN, et al. An open-source platform for analyzing and sharing worm-behavior data. Nature methods. 2018;15(9):645-6. Epub 2018/09/02. doi: 10.1038/s41592-018-0112-1. PubMed PMID: 30171234; PubMed Central PMCID: PMCPMC6284784.
39. Javer A, Ripoll-Sanchez L, Brown AEX. Powerful and interpretable behavioural features for quantitative phenotyping of Caenorhabditis elegans. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2018;373(1758). Epub 2018/09/12. doi: 10.1098/rstb.2017.0375. PubMed PMID: 30201839; PubMed Central PMCID: PMCPMC6158219.
40. Ardiel EL, Rankin CH. An elegant mind: Learning and memory in Caenorhabditis elegans. 2010;17(4):191-201. doi: 10.1101/lm.960510.