POL Scientific / JBM / Volume 6 / Issue 3 / DOI: 10.14440/jbm.2019.288
Cite this article
31
Citations
114
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ARTICLE

In vivo measurement of enhanced agouti-related peptide release in the paraventricular nucleus of the hypothalamus through Gs activation of agouti-related peptide neurons

Zhenzhong Cui1,2 Adam S. Smith3,4
Show Less
1 Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
2 Mouse Metabolism Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
3 Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
4 Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
JBM 2019 , 6(3), 1;
Published: 4 July 2019
© 2019 by the author. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Agouti-related peptide (AgRP) neurons of the hypothalamus play a role in hunger-triggered food intake, stability of body weight, and long-term energy balance. A recent study showed that activation of the Gs-linked G protein-coupled receptors (GCPR) expressed by hypothalamic AgRP neurons promotes a sustained increase in food intake. Enhanced AgRP release has been the postulated underlying mechanism. Here, we confirmed that activation of Gs-coupled receptors expressed by AgRP neurons in the arcuate nucleus (ARC) of the hypothalamus, which is the primary brain region for the synthesis and release of AgRP, leads to increased release of AgRP in the paraventricular nucleus of the hypothalamus (PVN). We were unable to confirm changes in AgRP expression or intracellular content using traditional histological techniques. Thus, we developed an assay to measure AgRP in the extracellular fluid in the brain using large molecular weight cut-off microdialysis probes. Our technique enables assessment of brain AgRP pharmacokinetics under physiological conditions and in response to specific pharmacological interventions designed to modulate AgRP signaling.

Keywords
AgRP
DREADD
in vivo microdialysis
arcuate nucleus of the hypothalamus
References

1. Caballero B. The global epidemic of obesity: An overview. Epidemiol Rev. 2007;29:1-5. doi: 10.1093/epirev/mxm012. PubMed PMID: 17569676.
2. Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron. 2002;36(2):199-211. PubMed PMID: 12383777.
3. Rueda-Clausen CF, Padwal RS, Sharma AM. New pharmacological approaches for obesity management. Nat Rev Endocrinol. 2013;9(8):467-78. doi: 10.1038/nrendo.2013.113. PubMed PMID: WOS:000322001800007.
4. Brownley KA, Peat CM, La Via M, Bulik CM. Pharmacological approaches to the management of binge eating disorder. Drugs. 2015;75:9-32. doi: 10.1007/s40265-014-0327-0. PubMed PMID: WOS:000347148600002.
5. Luquet S, Perez FA, Hnasko TS, Palmiter RD. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science. 2005;310(5748):683-5. doi: 10.1126/science.1115524. PubMed PMID: 16254186.
6. Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest. 2011;121(4):1424-8. doi: 10.1172/JCI46229. PubMed PMID: 21364278; PubMed Central PMCID: PMCPMC3069789.
7. Sternson SM. Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron. 2013;77(5):810-24. doi: 10.1016/j.neuron.2013.02.018. PubMed PMID: 23473313; PubMed Central PMCID: PMCPMC4306350.
8. Baver SB, Hope K, Guyot S, Bjorbaek C, Kaczorowski C, O'Connell KM. Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus. J Neurosci. 2014;34(16):5486-96. doi: 10.1523/JNEUROSCI.4861-12.2014. PubMed PMID: 24741039; PubMed Central PMCID: PMCPMC4298648.
9. Wu Q, Boyle MP, Palmiter RD. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell. 2009;137(7):1225-34. doi: 10.1016/j.cell.2009.04.022. PubMed PMID: 19563755; PubMed Central PMCID: PMCPMC2729323.
10. Wu Q, Palmiter RD. GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. Eur J Pharmacol. 2011;660(1):21-7. doi: 10.1016/j.ejphar.2010.10.110. PubMed PMID: 21211531; PubMed Central PMCID: PMCPMC3108334.
11. Ebihara K, Ogawa Y, Katsuura G, Numata Y, Masuzaki H, Satoh N, et al. Involvement of agouti-related protein, an endogenous antagonist of hypothalamic melanocortin receptor, in leptin action. Diabetes. 1999;48(10):2028-33. PubMed PMID: 10512369.
12. Schick RR, Schusdziarra V, Nussbaumer C, Classen M. Neuropeptide Y and food intake in fasted rats: effect of naloxone and site of action. Brain Res. 1991;552(2):232-9. PubMed PMID: 1913187.
13. Varela L, Horvath TL. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep. 2012;13(12):1079-86. doi: 10.1038/embor.2012.174. PubMed PMID: 23146889; PubMed Central PMCID: PMCPMC3512417.
14. Varela L, Horvath TL. AgRP neurons: a switch between peripheral carbohydrate and lipid utilization. EMBO J. 2012;31(22):4252-4. doi: 10.1038/emboj.2012.287. PubMed PMID: 23085989; PubMed Central PMCID: PMCPMC3501218.
15. Sobrino Crespo C, Perianes Cachero A, Puebla Jimenez L, Barrios V, Arilla Ferreiro E. Peptides and food intake. Front Endocrinol (Lausanne). 2014;5:58. doi: 10.3389/fendo.2014.00058. PubMed PMID: 24795698; PubMed Central PMCID: PMCPMC4005944.
16. Atasoy D, Aponte Y, Su HH, Sternson SM. A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J Neurosci. 2008;28(28):7025-30. doi: 10.1523/JNEUROSCI.1954-08.2008. PubMed PMID: 18614669; PubMed Central PMCID: PMCPMC2593125.
17. Atasoy D, Betley JN, Li WP, Su HH, Sertel SM, Scheffer LK, et al. A genetically specified connectomics approach applied to long-range feeding regulatory circuits. Nat Neurosci. 2014;17(12):1830-9. doi: 10.1038/nn.3854. PubMed PMID: 25362474; PubMed Central PMCID: PMCPMC4292906.
18. Krashes MJ, Kravitz AV. Optogenetic and chemogenetic insights into the food addiction hypothesis. Front Behav Neurosci. 2014;8:57. doi: 10.3389/fnbeh.2014.00057. PubMed PMID: 24616674; PubMed Central PMCID: PMCPMC3937547.
19. Nakajima K, Cui Z, Li C, Meister J, Cui Y, Fu O, et al. Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake. Nat Commun. 2016;7:10268. doi: 10.1038/ncomms10268. PubMed PMID: 26743492.
20. Aponte Y, Atasoy D, Sternson SM. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci. 2011;14(3):351-5. doi: 10.1038/nn.2739. PubMed PMID: 21209617; PubMed Central PMCID: PMCPMC3049940.
21. Adamantidis A, Arber S, Bains JS, Bamberg E, Bonci A, Buzsaki G, et al. Optogenetics: 10 years after ChR2 in neurons--views from the community. Nat Neurosci. 2015;18(9):1202-12. doi: 10.1038/nn.4106. PubMed PMID: 26308981.
22. Guettier JM, Gautam D, Scarselli M, Ruiz de Azua I, Li JH, Rosemond E, et al. A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc Natl Acad Sci U S A. 2009;106(45):19197-202. doi: 10.1073/pnas.0906593106. PubMed PMID: 19858481; PubMed Central PMCID: PMCPMC2767362.
23. Rogan SC, Roth BL. Remote control of neuronal signaling. Pharmacol Rev. 2011;63(2):291-315. doi: 10.1124/pr.110.003020. PubMed PMID: 21415127; PubMed Central PMCID: PMCPMC3082452.
24. Wess J, Nakajima K, Jain S. Novel designer receptors to probe GPCR signaling and physiology. Trends Pharmacol Sci. 2013;34(7):385-92. doi: 10.1016/j.tips.2013.04.006. PubMed PMID: 23769625; PubMed Central PMCID: PMCPMC3758874.
25. Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37(4):649-61. PubMed PMID: 12597862.
26. Ulrich JD, Burchett JM, Restivo JL, Schuler DR, Verghese PB, Mahan TE, et al. In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis. Mol Neurodegener. 2013;8. doi: Artn 13
10.1186/1750-1326-8-13. PubMed PMID: WOS:000318657400001.
27. Yamada K, Patel TK, Hochgrafe K, Mahan TE, Jiang H, Stewart FR, et al. Analysis of in vivo turnover of tau in a mouse model of tauopathy. Mol Neurodegener. 2015;10. doi: ARTN 55
10.1186/s13024-015-0052-5. PubMed PMID: WOS:000363441300001.
28. Hori Y, Takeda S, Cho H, Wegmann S, Shoup TM, Takahashi K, et al. A Food and Drug Administration-approved asthma therapeutic agent impacts amyloid beta in the brain in a transgenic model of Alzheimer disease. J Biol Chem. 2015;290:1966-78. doi: 10.1074/jbc.M114.586602. PubMed PMID: 25468905; PubMed Central PMCID: PMCPMC4303653.
29. Chefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of brain microdialysis. Current protocols in neuroscience / editorial board, Jacqueline N Crawley [et al]. 2009;7:1.-7.1.28. doi: 10.1002/0471142301.ns0701s47. PubMed Central PMCID: PMCPMC2953244.
30. Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science. 2017;357:503-7.
31. Sternson SM, Nicholas Betley J, Cao ZF. Neural circuits and motivational processes for hunger. Curr Opin Neurobiol. 2013;23(3):353-60. doi: 10.1016/j.conb.2013.04.006. PubMed PMID: 23648085; PubMed Central PMCID: PMCPMC3948161.
32. Sternson SM, Atasoy D. Agouti-related protein neuron circuits that regulate appetite. Neuroendocrinology. 2014;100(2-3):95-102. doi: 10.1159/000369072. PubMed PMID: 25402352.

Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TAB, Published by POL Scientific