POL Scientific / JBM / Volume 6 / Issue 1 / DOI: 10.14440/jbm.2019.276
Cite this article
1
Download
33
Citations
110
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
PROTOCOLS

A step-by-step beginner’s protocol for whole genome sequencing of human bacterial pathogens

Sanjay S. Gautam1 Rajendra KC1 Kelvin WC Leong3 Micheál Mac Aogáin2 Ronan F. O’Toole1,2,3
Show Less
1 School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
2 Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin D08 W9RT, Ireland
3 School of Molecular Sciences, College of Science, Health and Engineering, La Trobe University, Victoria 3690, Australia
JBM 2019 , 6(1), 1;
Published: 15 March 2019
© 2019 by the author. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Bacterial whole genome sequencing (WGS) is becoming a widely-used technique in research, clinical diagnostic, and public health laboratories. It enables high resolution characterization of bacterial pathogens in terms of properties that include antibiotic resistance, molecular epidemiology, and virulence. The introduction of next-generation sequencing instrumentation has made WGS attainable in terms of costs. However, the lack of a beginner’s protocol for WGS still represents a barrier to its adoption in some settings. Here, we present detailed step-by-step methods for obtaining WGS data from a range of different bacteria (Gram-positive, Gram-negative, and acid-fast) using the Illumina platform. Modifications have been performed with respect to DNA extraction and library normalization to maximize the output from the laboratory consumables invested. The protocol represents a simplified and reproducible method for producing high quality sequencing data. The key advantages of this protocol include: simplicity of the protocol for users with no prior genome sequencing experience and reproducibility of the protocol across a wide range of bacteria.

Keywords
whole genome sequencing
Enterococcus faecium
Haemophilus influenzae
Mycobacterium tuberculosis
References

1. Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo Elias C, Bradley P, et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. The Lancet Infectious diseases. 2015;15(10):1193-202.
2. Takiff HE, Feo O. Clinical value of whole-genome sequencing of Mycobacterium tuberculosis. The Lancet Infectious Diseases.15(9):1077-90.
3. Harris SR, Cartwright EJP, Török ME, Holden MTG, Brown NM, Ogilvy-Stuart AL, et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. The Lancet Infectious Diseases. 2013;13(2):130-6.
4. Grad YH, Lipsitch M, Feldgarden M, Arachchi HM, Cerqueira GC, FitzGerald M, et al. Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(8):3065-70.
5. Llarena AK, Taboada E, Rossi M. Whole-Genome Sequencing in Epidemiology of Campylobacter jejuni Infections. J Clin Microbiol. 2017;55(5):1269-75.
6. Reuter S, Harrison TG, Koser CU, Ellington MJ, Smith GP, Parkhill J, et al. A pilot study of rapid whole-genome sequencing for the investigation of a Legionella outbreak. BMJ open. 2013;3(1).
7. Gautam SS, Mac Aogain M, Cooley LA, Haug G, Fyfe JA, Globan M, et al. Molecular epidemiology of tuberculosis in Tasmania and genomic characterisation of its first known multi-drug resistant case. PLoS One. 2018;13(2):e0192351.
8. McGinnis J, Laplante J, Shudt M, George KS. Next generation sequencing for whole genome analysis and surveillance of influenza A viruses. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 2016;79:44-50.
9. Park DJ, Dudas G, Wohl S, Goba A, Whitmer SL, Andersen KG, et al. Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone. Cell. 2015;161(7):1516-26.
10. Metsky HC, Matranga CB, Wohl S, Schaffner SF, Freije CA, Winnicki SM, et al. Zika virus evolution and spread in the Americas. Nature. 2017;546(7658):411-5.
11. Koser CU, Holden MT, Ellington MJ, Cartwright EJ, Brown NM, Ogilvy-Stuart AL, et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med. 2012;366(24):2267-75.
12. Halachev MR, Chan JZ, Constantinidou CI, Cumley N, Bradley C, Smith-Banks M, et al. Genomic epidemiology of a protracted hospital outbreak caused by multidrug-resistant Acinetobacter baumannii in Birmingham, England. Genome Med. 2014;6(11):70.
13. Davis RJ, Jensen SO, Van Hal S, Espedido B, Gordon A, Farhat R, et al. Whole Genome Sequencing in Real-Time Investigation and Management of a Pseudomonas aeruginosa Outbreak on a Neonatal Intensive Care Unit. Infection control and hospital epidemiology. 2015;36(9):1058-64.
14. Leong KC, Cooley LA, Anderson TL, Gautam SS, McEwan B, Wells A, et al. Emergence of Vancomycin-Resistant Enterococcus faecium at an Australian Hospital: A Whole Genome Sequencing Analysis. Scientific reports. 2018;10.1038/s41598-018-24614-6.
15. Healey A, Furtado A, Cooper T, Henry RJ. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods. 2014;10(1):1-8.
16. Assad NA, Balmes J, Mehta S, Cheema U, Sood A. Chronic obstructive pulmonary disease secondary to household air pollution. Seminars in Respiratory and Critical Care Medicine. 2015;36(3):408-21.
17. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647-9.
18. Sekizuka T, Yamashita A, Murase Y, Iwamoto T, Mitarai S, Kato S, et al. TGS-TB: Total Genotyping Solution for Mycobacterium tuberculosis Using Short-Read Whole-Genome Sequencing. PLOS ONE. 2015;10(11):e0142951.
19. Feuerriegel S, Schleusener V, Beckert P, Kohl TA, Miotto P, Cirillo DM, et al. PhyResSE: a Web Tool Delineating Mycobacterium tuberculosis Antibiotic Resistance and Lineage from Whole-Genome Sequencing Data. Journal of Clinical Microbiology. 2015;53(6):1908-14.
20. Thomsen MCF, Ahrenfeldt J, Cisneros JLB, Jurtz V, Larsen MV, Hasman H, et al. A Bacterial Analysis Platform: An Integrated System for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnostics and Surveillance. PLoS ONE. 2016;11(6):e0157718.
21. Kleinheinz KA, Joensen KG, Larsen MV. Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E. coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage. 2014;4:e27943.
22. Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TAB, Published by POL Scientific