POL Scientific / JBM / Volume 4 / Issue 3 / DOI: 10.14440/jbm.2017.180
Cite this article
23
Citations
53
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
PROTOCOLS

Measurement of intracellular calcium of submandibular glands using a high throughput plate reader

Abeer Kamal Shaalan1 Guy Carpenter1 Gordon Proctor1
Show Less
1 Mucosal and Salivary Biology Division, Dental Institute, King’s College London, Guy’s Hospital, Floor 17, Tower Wing, London SE1 9 RT, UK
JBM 2017 , 4(3), 1;
Published: 17 July 2017
© 2017 by the author. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Calcium ions (Ca2+) impact nearly every aspect of cellular life and intracellular calcium [Ca2+]i is a critical factor in the regulation of a plethora of physiological functions, including: muscle contraction, saliva secretion, metabolism, gene expression, cell survival and death. By measuring the changes of [Ca2+]i levels, critical physiologic functions can be characterized and aberrant pathologic conditions or drug responses can be efficiently monitored. We developed a protocol for assessment of Ca2+ signaling in the acinar units of submandibular glands isolated from C57BL/6 mice, using benchtop, multi-mode, high throughput plate reader (FlexStation 3). This method represents a powerful tool for unlimited in vitro studies to monitor changes in receptor-mediated Ca2+ responses while retaining functional and morphological features of a native setting.

Keywords
calcium
carbachol
in vitro
FlexStation
ionomycin
salivary glands
signaling
References

1. Proctor GB, Carpenter GH. Salivary secretion: mechanism and neural regulation. Monogr Oral Sci. 2014;24:14-29. Epub 2014/05/28. doi: 10.1159/000358781. PubMed PMID: 24862591.
2. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993;361(6410):315-25. Epub 1993/01/28. doi: 10.1038/361315a0. PubMed PMID: 8381210.
3. Melvin JE, Yule D, Shuttleworth T, Begenisich T. Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol. 2005;67:445-69. Epub 2005/02/16. doi: 10.1146/annurev.physiol.67.041703.084745. PubMed PMID: 15709965.
4. Mikoshiba K. The IP3 receptor/Ca2+ channel and its cellular function. Biochem Soc Symp. 2007;(74):9-22. Epub 2007/01/20. doi: 10.1042/bss0740009. PubMed PMID: 17233576.
5. Putney JW, Jr. Capacitative calcium entry revisited. Cell Calcium. 1990;11(10):611-24. Epub 1990/11/11. PubMed PMID: 1965707.
6. Dawson LJ, Fox PC, Smith PM. Sjogrens syndrome--the non-apoptotic model of glandular hypofunction. Rheumatology (Oxford). 2006;45(7):792-8. Epub 2006/04/06. doi: 10.1093/rheumatology/kel067. PubMed PMID: 16595520.
7. Petersen OH, Tepikin AV. Polarized calcium signaling in exocrine gland cells. Annu Rev Physiol. 2008;70:273-99. Epub 2007/09/14. doi: 10.1146/annurev.physiol.70.113006.100618. PubMed PMID: 17850212.
8. Tepikin AV, Voronina SG, Gallacher DV, Petersen OH. Pulsatile Ca2+ extrusion from single pancreatic acinar cells during receptor-activated cytosolic Ca2+ spiking. J Biol Chem. 1992;267(20):14073-6. Epub 1992/07/15. PubMed PMID: 1629206.
9. Mogami H, Tepikin AV, Petersen OH. Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen. Embo j. 1998;17(2):435-42. Epub 1998/02/28. doi: 10.1093/emboj/17.2.435. PubMed PMID: 9430635; PubMed Central PMCID: PMCPMC1170394.
10. Liu X, Ambudkar IS. Characteristics of a store-operated calcium-permeable channel: sarcoendoplasmic reticulum calcium pump function controls channel gating. J Biol Chem. 2001;276(32):29891-8. Epub 2001/06/08. doi: 10.1074/jbc.M103283200. PubMed PMID: 11395504.
11. Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD. Chemical calcium indicators. Methods. 2008;46(3):143-51. Epub 2008/10/22. doi: 10.1016/j.ymeth.2008.09.025. PubMed PMID: 18929663; PubMed Central PMCID: PMCPMC2666335.
12. Hirst RA, Harrison C, Hirota K, Lambert DG. Measurement of [Ca(2)+]i in whole cell suspensions using fura-2. Methods Mol Biol. 2005;312:37-45. Epub 2005/01/01. doi: 10.1385/1-59259-949-4:037. PubMed PMID: 21341090.
13. Kopp RF, Leech CA, Roe MW. Resveratrol Interferes with Fura-2 Intracellular Calcium Measurements. J Fluoresc. 2013. Epub 2013/10/24. doi: 10.1007/s10895-013-1312-9. PubMed PMID: 24151033; PubMed Central PMCID: PMCPMC3997619.
14. Valentine WJ, Tigyi G. High-Throughput Assays to Measure Intracellular Ca(2+) Mobilization in Cells that Express Recombinant S1P Receptor Subtypes. Methods in molecular biology (Clifton, NJ). 2012;874:77-87. doi: 10.1007/978-1-61779-800-9_7. PubMed PMID: PMC3617928.
15. Liao B, Zheng Y-M, Yadav VR, Korde AS, Wang Y-X. Hypoxia Induces Intracellular Ca(2+) Release by Causing Reactive Oxygen Species-Mediated Dissociation of FK506-Binding Protein 12.6 from Ryanodine Receptor 2 in Pulmonary Artery Myocytes. Antioxidants & Redox Signaling. 2011;14(1):37-47. doi: 10.1089/ars.2009.3047. PubMed PMID: PMC3000638.
16. Alberto AV, Faria RX, de Menezes JR, Surrage A, da Rocha NC, Ferreira LG, et al. Role of P2 Receptors as Modulators of Rat Eosinophil Recruitment in Allergic Inflammation. PLoS One. 2016;11(1):e0145392. Epub 2016/01/20. doi: 10.1371/journal.pone.0145392. PubMed PMID: 26784445; PubMed Central PMCID: PMCPMC4718666.
17. Mason MJ, Grinstein S. Ionomycin activates electrogenic Ca2+ influx in rat thymic lymphocytes. Biochem J. 1993;296 ( Pt 1):33-9. Epub 1993/11/15. PubMed PMID: 8250855; PubMed Central PMCID: PMCPMC1137651.
18. Ambudkar IS. Calcium signalling in salivary gland physiology and dysfunction. J Physiol. 2016;594(11):2813-24. Epub 2015/11/26. doi: 10.1113/jp271143. PubMed PMID: 26592972.
19. Waite JH, Tanzer ML. Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science. 1981;212(4498):1038-40. Epub 1981/05/29. doi: 10.1126/science.212.4498.1038. PubMed PMID: 17779975.
20. Waite JH. Evidence for a repeating 3,4-dihydroxyphenylalanine- and hydroxyproline-containing decapeptide in the adhesive protein of the mussel, Mytilus edulis L. J Biol Chem. 1983;258(5):2911-5. Epub 1983/03/10. PubMed PMID: 6298211.
21. Marshall IC, Boyfield I, McNulty S. Ratiometric Ca(2)+ measurements using the FlexStation(R) Scanning Fluorometer. Methods Mol Biol. 2005;312:119-24. Epub 2005/01/01. doi: 10.1385/1-59259-949-4:119. PubMed PMID: 21341094.
22. Martinussen HJ, Waldenstrom A, Ronquist G. Carbachol-induced increase in inositol trisphosphate (IP3) content is attenuated by adrenergic stimulation in the isolated working rat heart. Acta Physiol Scand. 1995;153(2):151-8. Epub 1995/02/01. doi: 10.1111/j.1748-1716.1995.tb09846.x. PubMed PMID: 7778455.
23. Putney JW, Jr. A model for receptor-regulated calcium entry. Cell Calcium. 1986;7(1):1-12. Epub 1986/02/01. PubMed PMID: 2420465.
24. Berridge MJ, Irvine RF. Inositol phosphates and cell signalling. Nature. 1989;341(6239):197-205. Epub 1989/09/21. doi: 10.1038/341197a0. PubMed PMID: 2550825.
25. Yang CM, Chou SP, Wang YY, Hsieh JT, Ong R. Muscarinic regulation of cytosolic free calcium in canine tracheal smooth muscle cells: Ca2+ requirement for phospholipase C activation. Br J Pharmacol. 1993;110(3):1239-47. Epub 1993/11/01. PubMed PMID: 8298814; PubMed Central PMCID: PMCPMC2175810.

Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TAB, Published by POL Scientific