POL Scientific / JBM / Volume 4 / Issue 1 / DOI: 10.14440/jbm.2017.171
Cite this article
21
Citations
56
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
PROTOCOLS

RATA: A method for high-throughput identification of RNA bound transcription factors

Karyn Schmidt1,2,3 Frank Buquicchio1,2,3 Johanna S. Carroll1,2,3 Robert J. Distel4 Carl D. Novina1,2,3
Show Less
1 Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
2 Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
3 Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
4 Belfer Office for Dana-Farber Innovations, Dana-Farber Cancer Institute, Boston, MA 02215, USA
JBM 2017 , 4(1), 1;
Published: 16 March 2017
© 2017 by the author. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

transcription factors is especially challenging due to inefficient RNA immunoprecipitation and low abundance of many transcription factors. Here we describe a highly sensitive, user-friendly, and inexpensive technique called RATA (RNA-associated transcription factor array), which utilizes a MS2-aptamer pulldown strategy coupled with transcription factor activation arrays for identification of transcription factors associated with a nuclear RNA of interest. RATA requires only ~5 million cells and standard molecular biology reagents for multiplexed identification of up to 96 transcription factors in 2–3 d. Thus, RATA offers significant advantages over other technologies for analysis of RNA-transcription factor interactions.

Keywords
long non-coding RNA
transcription factor
scaffold
MS2 RNA immunoprecipitation
References

1. Li J, Xuan Z, Liu C. Long non-coding RNAs and complex human diseases. International journal of molecular sciences. 2013;14(9):18790-808. doi: 10.3390/ijms140918790. PubMed PMID: 24036441; PubMed Central PMCID: PMC3794807.
2. Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nature reviews Molecular cell biology. 2013;14(11):699-712. doi: 10.1038/nrm3679. PubMed PMID: 24105322.
3. Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M, Calabrese JM, et al. Systematic discovery of Xist RNA binding proteins. Cell. 2015;161(2):404-16. doi: 10.1016/j.cell.2015.03.025. PubMed PMID: 25843628; PubMed Central PMCID: PMCPMC4425988.
4. McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. 2015;521(7551):232-6. doi: 10.1038/nature14443. PubMed PMID: 25915022; PubMed Central PMCID: PMCPMC4516396.
5. Marin-Bejar O, Huarte M. RNA Pulldown Protocol for In Vitro Detection and Identification of RNA-Associated Proteins. In: Carmichael GG, editor. Regulatory Non-Coding RNAs: Methods and Protocols. New York, NY: Springer New York; 2015. p. 87-95.
6. Schmidt K, Joyce CE, Buquicchio F, Brown A, Ritz J, Distel RJ, et al. The lncRNA SLNCR1 Mediates Melanoma Invasion through a Conserved SRA1-like Region. Cell Rep. 2016;15(9):2025-37. doi: 10.1016/j.celrep.2016.04.018. PubMed PMID: 27210747; PubMed Central PMCID: PMCPMC4889529.
7. LeCuyer KA, Behlen LS, Uhlenbeck OC. Mutants of the bacteriophage MS2 coat protein that alter its cooperative binding to RNA. Biochemistry. 1995;34(33):10600-6. PubMed PMID: 7544616.
8. Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM. Localization of ASH1 mRNA particles in living yeast. Molecular cell. 1998;2(4):437-45. PubMed PMID: 9809065.
9. Yoon JH, Srikantan S, Gorospe M. MS2-TRAP (MS2-tagged RNA affinity purification): tagging RNA to identify associated miRNAs. Methods. 2012;58(2):81-7. doi: 10.1016/j.ymeth.2012.07.004. PubMed PMID: 22813890; PubMed Central PMCID: PMC3493847.
10. Gong C, Maquat LE. Affinity Purification of Long Noncoding RNA-Protein Complexes from Formaldehyde Cross-Linked Mammalian Cells. Methods in molecular biology. 2015;1206:81-6. doi: 10.1007/978-1-4939-1369-5_7. PubMed PMID: 25240888.
11. Lee N, Moss WN, Yario TA, Steitz JA. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell. 2015;160(4):607-18. doi: 10.1016/j.cell.2015.01.015. PubMed PMID: 25662012; PubMed Central PMCID: PMCPMC4329084.
12. Vance KW, Ponting CP. Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet. 2014;30(8):348-55. doi: 10.1016/j.tig.2014.06.001. PubMed PMID: 24974018; PubMed Central PMCID: PMCPMC4115187.
13. Selth LA, Gilbert C, Svejstrup JQ. RNA immunoprecipitation to determine RNA-protein associations in vivo. Cold Spring Harb Protoc. 2009;2009(6):pdb prot5234. doi: 10.1101/pdb.prot5234. PubMed PMID: 20147192.
14. Lizio M, Harshbarger J, Shimoji H, Severin J, Kasukawa T, Sahin S, et al. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome biology. 2015;16:22. doi: 10.1186/s13059-014-0560-6. PubMed PMID: 25723102; PubMed Central PMCID: PMCPMC4310165.

Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TAB, Published by POL Scientific