POL Scientific / JBM / Volume 11 / Issue 4 / DOI: 10.14440/jbm.2024.0065
REVIEW

Nanotechnology-based approaches for targeted drug delivery for the treatment of respiratory tract infections

Vasiliki Epameinondas Georgakopoulou1* Petros Papalexis2 Nikolaos Trakas3
Show Less
1 Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
2 Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, Athens, Greece
3 Department of Biochemistry, Sismanogleio Hospital, Athens, Greece
JBM 2024 , 11(4), e99010032; https://doi.org/10.14440/jbm.2024.0065
Submitted: 16 August 2024 | Revised: 14 September 2024 | Accepted: 20 September 2024 | Published: 23 October 2024
© 2024 by the Journal of Biological Methods published by POL Scientific. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Background: Nanotechnology has emerged as a promising field for the diagnosis, monitoring, and treatment of respiratory tract infections (RTIs). By leveraging the unique properties of nanoscale delivery systems, nanotechnology can significantly enhance the selectivity and efficacy of antimicrobials, thereby reducing off-target effects. Objective: This review explores the development and application of targeted nanosystems in combating viral, bacterial, and fungal RTIs. Nanotechnology-based systems, including biological and non-biological nanoparticles, offer innovative solutions for overcoming antimicrobial resistance, improving drug bioavailability, and minimizing systemic side effects. RTIs are a leading cause of morbidity and mortality globally, particularly affecting vulnerable populations such as children, the elderly, and immunocompromised individuals. Traditional drug delivery methods face numerous challenges, such as rapid clearance, poor tissue penetration, and drug degradation. Nanoparticle-based delivery systems address these issues by enhancing tissue penetration, providing sustained drug release, and enabling targeted delivery to infection sites. These systems include liposomal delivery, polymeric nanoparticles, dendrimers, and metal-based nanoparticles, each offering unique advantages in treating RTIs. Nanotechnology also plays a crucial role in vaccine development by offering new strategies to enhance immune responses and improve antigen delivery. Furthermore, the review discusses the clinical translation and regulatory considerations for nanotechnology-based drug delivery, emphasizing the need for rigorous testing and quality control to ensure safety and efficacy. Conclusion: Nanotechnology offers promising advancements in the treatment, and prevention of RTIs by enhancing drug delivery and efficacy. By addressing challenges such as antimicrobial resistance and poor tissue penetration, nanotechnology-based systems have the potential to significantly improve patient outcomes.

Keywords
Nanotechnology
Targeted drug delivery
Respiratory tract infections
Nanoparticles
Antimicrobial resistance
Funding
None.
References
  1. Saleri N, Ryan ET. Respiratory infections. In: Travel Medicine. Netherlands: Elsevier; 2019. p. 527-537. doi: 10.1016/B978-0-323-54696-6.00059-8

 

  1. Ritchie AI, Wedzicha JA. Definition, causes, pathogenesis, and consequences of chronic obstructive pulmonary disease exacerbations. Clin Chest Med. 2020;41(3):421-438. doi: 10.1016/j.ccm.2020.06.007

 

  1. Safiri S, Mahmoodpoor A, Kolahi AA, et al. Global burden of lower respiratory infections during the last three decades. Front Public Health. 2023;10:1028525. doi: 10.3389/fpubh.2022.1028525

 

  1. Schot MJC, Dekker ARJ, van Werkhoven CH, et al. Burden of disease in children with respiratory tract infections in primary care: Diary-based cohort study. Fam Pract. 2019;36(6): 723-729. doi: 10.1093/fampra/cmz024

 

  1. Ezike TC, Okpala US, Onoja UL, et al. Advances in drug delivery systems, challenges and future directions. Heliyon. 2023;9(6):e17488. doi: 10.1016/j.heliyon.2023.e17488

 

  1. Lou J, Duan H, Qin Q, et al. Advances in oral drug delivery systems: Challenges and opportunities. Pharmaceutics. 2023;15(2):484. doi: 10.3390/pharmaceutics15020484

 

  1. Altammar KA. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front Microbiol. 2023;14:1155622. doi: 10.3389/fmicb.2023.1155622

 

  1. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules. 2019;25(1):112. doi: 10.3390/molecules25010112

 

  1. Sarkar M, Wang Y, Ekpenyong O, Liang D, Xie H. Pharmacokinetic behaviors of soft nanoparticulate formulations of chemotherapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023;15(2):e1846. doi: 10.1002/wnan.1846

 

  1. Malik S, Muhammad K, Waheed Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules. 2023;28(18):6624. doi: 10.3390/molecules28186624

 

  1. Tringides MC, Jałochowski M, Bauer E. Quantum size effects in metallic nanostructures. Phys Today. 2007;60(4):50-54. doi: 10.1063/1.2731973

 

  1. Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon. 2022;8(5):e09394. doi: 10.1016/j.heliyon.2022.e09394

 

  1. Mittal P, Saharan A, Verma R, et al. Dendrimers: A new race of pharmaceutical nanocarriers. Biomed Res Int. 2021;2021:8844030. doi: 10.1155/2021/8844030

 

  1. Gagliardi A, Giuliano E, Venkateswararao E, et al. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol. 2021;12:601626. doi: 10.3389/fphar.2021.601626

 

  1. Subroto E, Andoyo R, Indiarto R. Solid lipid nanoparticles: Review of the current research on encapsulation and delivery systems for active and antioxidant compounds. Antioxidants (Basel). 2023;12(3):633. doi: 10.3390/antiox12030633

 

  1. Huang H, Liu R, Yang J, et al. Gold nanoparticles: Construction for drug delivery and application in cancer immunotherapy. Pharmaceutics. 2023;15(7):1868. doi: 10.3390/pharmaceutics15071868

 

  1. Liu Y, Liang Y, Yuhong J, et al. Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs. Drug Des Devel Ther. 2024;18:1469-1495. doi: 10.2147/DDDT.S447496

 

  1. Seidu TA, Kutoka PT, Asante DO, Farooq MA, Alolga RN, Bo W. Functionalization of nanoparticulate drug delivery systems and its influence in cancer therapy. Pharmaceutics. 2022;14(5):1113. doi: 10.3390/pharmaceutics14051113

 

  1. Cheng X, Xie Q, Sun Y. Advances in nanomaterial-based targeted drug delivery systems. Front Bioeng Biotechnol. 2023;11:1177151. doi: 10.3389/fbioe.2023.1177151

 

  1. Flerlage T, Boyd DF, Meliopoulos V, Thomas PG, Schultz- Cherry S. Influenza virus and SARS-CoV-2: Pathogenesis and host responses in the respiratory tract. Nat Rev Microbiol. 2021;19(7):425-441. doi: 10.1038/s41579-021-00542-7

 

  1. Andre GO, Converso TR, Politano WR, et al. Role of Streptococcus pneumoniae proteins in evasion of complement-mediated immunity. Front Microbiol. 2017;8:224. doi: 10.3389/fmicb.2017.00224

 

  1. Zhai W, Wu F, Zhang Y, Fu Y, Liu Z. The immune escape mechanisms of Mycobacterium tuberculosis. Int J Mol Sci. 2019;20(2):340. doi: 10.3390/ijms20020340

 

  1. Gu X, Hua YH, Zhang YD, Bao DI, Lv J, Hu HF. The pathogenesis of Aspergillus fumigatus, host defense mechanisms, and the development of AFMP4 antigen as a vaccine. Pol J Microbiol. 2021;70(1):3-11. doi: 10.33073/pjm-2021-003

 

  1. Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, et al. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal. 2022;36(9):e24655. doi: 10.1002/jcla.24655

 

  1. Zhao A, Sun J, Liu Y. Understanding bacterial biofilms: From definition to treatment strategies. Front Cell Infect Microbiol. 2023;13:1137947. doi: 10.3389/fcimb.2023.1137947

 

  1. Sauer K, Stoodley P, Goeres DM, et al. The biofilm life cycle: Expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 2022;20(10):608-620. doi: 10.1038/s41579-022-00767-0

 

  1. Ramakrishnan R, Singh AK, Singh S, Chakravortty D, Das D. Enzymatic dispersion of biofilms: An emerging biocatalytic avenue to combat biofilm-mediated microbial infections. J Biol Chem. 2022;298(9):102352. doi: 10.1016/j.jbc.2022.102352

 

  1. Rutherford ST, Bassler BL. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2(11):a012427. doi: 10.1101/cshperspect.a012427

 

  1. Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol. 2022;20(12):750-766. doi: 10.1038/s41579-022-00763-4

 

  1. Wei CJ, Crank MC, Shiver J, Graham BS, Mascola JR, Nabel GJ. Next-generation influenza vaccines: Opportunities and challenges. Nat Rev Drug Discov. 2020;19(4):239-252. doi: 10.1038/s41573-019-0056-x. Erratum in: Nat Rev Drug Discov. 2020;19(6):427. doi: 10.1038/s41573-020-0066-8.

 

  1. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 2016;11(6):673-692. doi: 10.2217/nnm.16.5

 

  1. Kyriakides TR, Raj A, Tseng TH, et al. Biocompatibility of nanomaterials and their immunological properties. Biomed Mater. 2021;16(4): 10.1088/1748-605X/abe5fa. doi: 10.1088/1748-605X/abe5fa

 

  1. Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9):2193. doi: 10.3390/molecules25092193

 

  1. Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers (Basel). 2023;15(7):1596. doi: 10.3390/polym15071596

 

  1. Wu J. The Enhanced Permeability and Retention (EPR) effect: The significance of the concept and methods to enhance its application. J Pers Med. 2021;11(8):771. doi: 10.3390/jpm11080771

 

  1. Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release. 2014;190:485-499. doi: 10.1016/j.jconrel.2014.06.038

 

  1. Mamo T, Moseman EA, Kolishetti N, et al. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond). 2010;5(2):269-285. doi: 10.2217/nnm.10.1

 

  1. Knap K, Kwiecień K, Reczyńska-Kolman K, Pamuła E. Inhalable microparticles as drug delivery systems to the lungs in a dry powder formulations. Regen Biomater. 2022;10:rbac099. doi: 10.1093/rb/rbac099

 

  1. Mesic A, Jackson EK, Lalika M, Koelle DM, Patel RC. Interferon-based agents for current and future viral respiratory infections: A scoping literature review of human studies. PLOS Glob Public Health. 2022;2(4):e0000231. doi: 10.1371/journal.pgph.0000231

 

  1. Thipphawong J. Inhaled cytokines and cytokine antagonists. Adv Drug Deliv Rev. 2006;58(9-10):1089-1105. doi: 10.1016/j.addr.2006.07.014

 

  1. Ibrahim M, Verma R, Garcia-Contreras L. Inhalation drug delivery devices: Technology update. Med Devices (Auckl). 2015;8:131-139. doi: 10.2147/MDER.S48888

 

  1. Chandel A, Goyal AK, Ghosh G, Rath G. Recent advances in aerosolised drug delivery. Biomed Pharmacother. 2019;112:108601. doi: 10.1016/j.biopha.2019.108601

 

  1. Ke WR, Chang RYK, Kwok PCL, Tang P, Chen L, Chen D, Chan HK. Administration of dry powders during respiratory supports. Ann Transl Med. 2021;9(7):596. doi: 10.21037/atm-20-3946

 

  1. Dhanani J, Fraser JF, Chan HK, Rello J, Cohen J, Roberts JA. Fundamentals of aerosol therapy in critical care. Crit Care. 2016;20(1):269. doi: 10.1186/s13054-016-1448-5

 

  1. Ye Y, Ma Y, Zhu J. The future of dry powder inhaled therapy: Promising or discouraging for systemic disorders? Int J Pharm. 2022;614:121457. doi: 10.1016/j.ijpharm.2022.121457

 

  1. Levy ML, Carroll W, Izquierdo Alonso JL, Keller C, Lavorini F, Lehtimäki L. Understanding dry powder inhalers: Key technical and patient preference attributes. Adv Ther. 2019;36(10):2547-2557. doi: 10.1007/s12325-019-01066-6

 

  1. Chalmers JD, van Ingen J, van der Laan R, Herrmann JL. Liposomal drug delivery to manage nontuberculous mycobacterial pulmonary disease and other chronic lung infections. Eur Respir Rev. 2021;30(161):210010. doi: 10.1183/16000617.0010-2021

 

  1. Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb). 2005;85(4):227-234. doi: 10.1016/j.tube.2004.11.003

 

  1. Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288-303. doi: 10.4103/1735-5362.235156

 

  1. Elmowafy M, Al-Sanea MM. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm J. 2021;29(9):999-1012. doi: 10.1016/j.jsps.2021.07.015

 

  1. Guo X, Zuo X, Zhou Z, et al. PLGA-based micro/nanoparticles: An overview of their applications in respiratory diseases. Int J Mol Sci. 2023;24(5):4333. doi: 10.3390/ijms24054333

 

  1. Gomes Dos Reis L, Svolos M, Hartwig B, Windhab N, Young PM, Traini D. Inhaled gene delivery: A formulation and delivery approach. Expert Opin Drug Deliv. 2017;14(3): 319-330. doi: 10.1080/17425247.2016.1214569

 

  1. Chopra H, Mohanta YK, Rauta PR, et al. An insight into advances in developing nanotechnology based therapeutics, drug delivery, diagnostics and vaccines: Multidimensional applications in tuberculosis disease management. Pharmaceuticals (Basel). 2023;16(4):581. doi: 10.3390/ph16040581

 

  1. Wasik AA, Tuuminen T. Salt therapy as a complementary method for the treatment of respiratory tract diseases, with a focus on mold-related illness. Altern Ther Health Med. 2021;27(S1):223-239.

 

  1. Crisan-Dabija R, Sandu IG, Popa IV, Scripcariu DV, Covic A, Burlacu A. Halotherapy-an ancient natural ally in the management of asthma: A Comprehensive review. Healthcare (Basel). 2021;9(11):1604. doi: 10.3390/healthcare9111604

 

  1. Sim S, Wong NK. Nanotechnology and its use in imaging and drug delivery (Review). Biomed Rep. 2021;14(5):42. doi: 10.3892/br.2021.1418

 

  1. Chehelgerdi M, Chehelgerdi M, Allela OQB, et al. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol Cancer. 2023;22(1):169. doi: 10.1186/s12943-023-01865-0

 

  1. Feng C, Li Y, Ferdows BE, et al. Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharm Sin B. 2022;12(5):2206-2223. doi: 10.1016/j.apsb.2021.12.021

 

  1. Thomas RJ. Particle size and pathogenicity in the respiratory tract. Virulence. 2013;4(8):847-858. doi: 10.4161/viru.27172

 

  1. Liu Y, Hardie J, Zhang X, Rotello VM. Effects of engineered nanoparticles on the innate immune system. Semin Immunol. 2017;34:25-32. doi: 10.1016/j.smim.2017.09.011

 

  1. Jia L, Zhang P, Sun H, et al. Optimization of nanoparticles for smart drug delivery: A review. Nanomaterials (Basel). 2021;11(11):2790. doi: 10.3390/nano11112790

 

  1. Gimondi S, Ferreira H, Reis RL, Neves NM. Microfluidic devices: A tool for nanoparticle synthesis and performance evaluation. ACS Nano. 2023;17(15):14205-14228. doi: 10.1021/acsnano.3c01117

 

  1. Lázár I, Szabó HJ. Prevention of the aggregation of nanoparticles during the synthesis of nanogold-containing silica aerogels. Gels. 2018;4(2):55. doi: 10.3390/gels4020055

 

  1. Guerrini L, Alvarez-Puebla RA, Pazos-Perez N. Surface modifications of nanoparticles for stability in biological fluids. Materials (Basel). 2018;11(7):1154. doi: 10.3390/ma11071154

 

  1. Card JW, Zeldin DC, Bonner JC, Nestmann ER. Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol. 2008;295(3):L400-L411. doi: 10.1152/ajplung.00041.2008

 

  1. Hidalgo A, Garcia-Mouton C, Autilio C, et al. Pulmonary surfactant and drug delivery: Vehiculization, release and targeting of surfactant/tacrolimus formulations. J Control Release. 2021;329:205-222. doi: 10.1016/j.jconrel.2020.11.042

 

  1. Wang F, Liu J, Zeng H. Interactions of particulate matter and pulmonary surfactant: Implications for human health. Adv Colloid Interface Sci. 2020;284:102244. doi: 10.1016/j.cis.2020.102244

 

  1. Joseph TM, Kar Mahapatra D, Esmaeili A, et al. Nanoparticles: Taking a unique position in medicine. Nanomaterials (Basel). 2023;13(3):574. doi: 10.3390/nano13030574

 

  1. Đorđević S, Gonzalez MM, Conejos-Sánchez I, et al. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv Transl Res. 2022;12(3):500-525. doi: 10.1007/s13346-021-01024-2

 

  1. Dri DA, Rinaldi F, Carafa M, Marianecci C. Nanomedicines and nanocarriers in clinical trials: Surfing through regulatory requirements and physico-chemical critical quality attributes. Drug Deliv Transl Res. 2023;13(3):757-769. doi: 10.1007/s13346-022-01262-y

 

  1. Mühlebach S, Borchard G, Yildiz S. Regulatory challenges and approaches to characterize nanomedicines and their follow-on similars. Nanomedicine (Lond). 2015;10(4):659-674. doi: 10.2217/nnm.14.189

 

  1. Zhang YR, Lin R, Li HJ, He WL, Du JZ, Wang J. Strategies to improve tumor penetration of nanomedicines through nanoparticle design. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(1):e1519. doi: 10.1002/wnan.1519
Conflict of interest
The authors declare that they have no conflicts of interest.
Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific