POL Scientific / JBM / Volume 11 / Issue 4 / DOI: 10.14440/jbm.2024.0064
Cite this article
33
Download
21
Citations
126
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Hematological parameters of the European hake (Merluccius merluccius) in Toroneos Gulf, northern Greece: A case study

Dimitris Klaoudatos1†* George Michail1† Georgios A. Gkafas1 Joanne Sarantopoulou1 Nikolaos Neofitou1 Alexios Conides2 Dimitris Vafidis1 Evgenia Gourzioti3 Nikoleta Kravva4 Apostolos P. Apostolidis5 Athanasios Exadactylos1
Show Less
1 Department of Ichthyology and Aquatic Environment, Faculty of Agricultural Sciences, University of Thessaly, Volos, Thessaly, 38446 Greece
2 Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavyssos, Attica, 19013 Greece
3 Department of Aquaculture and Fish Diseases, Faculty of Veterinary Science, University of Thessaly, Karditsa, Thessaly, 43100 Greece
4 Directorate for Agricultural Economy and Veterinary, Regional Section of Halkidiki, Region of Central Macedonia, 54627 Greece
5 Department of Animal Production, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
JBM 2024 , 11(4), e99010039; https://doi.org/10.14440/jbm.2024.0064
Submitted: 15 August 2024 | Revised: 13 October 2024 | Accepted: 15 October 2024 | Published: 20 November 2024
© 2024 by the Journal of Biological Methods published by POL Scientific. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Background: The European hake (Merluccius merluccius) is a commercially valuable demersal species widely distributed in the Mediterranean Sea. Assessing the condition of fish populations in their natural habitats is challenging due to the lack of reliable reference points. Objective: This study aimed to utilize hematological analysis as an economical method to evaluate the physiological and health status of European hake, addressing the gap in hematological data for this species. Methods: Blood samples were collected from the caudal vein of 40 adult European hakes caught from the Toroneos Gulf (northern Greece) using a commercial bottom otter trawl. An automated hematological analyzer was used to assess hematological parameters alongside biometric and biological indices. Results: Female hakes showed significantly higher white blood cell (WBC) counts, thrombocyte (TC) counts, and red cell distribution width (RDW) than their male counterparts. Strong correlations were observed among various hematological parameters, notably between WBC and red blood cells (RBCs), hematocrit (Ht), and hemoglobin (Hb); between RBC and both Ht and Hb; between TC and both mean platelet volume and platelet distribution width (PDW); and between mean corpuscular Hb concentration and RDW. Significant differences were noted in RBCs, Hb, and Ht compared to data from wild-caught European hake populations in Argentina and Denmark. Both trawling depth and duration were found to significantly affect RBC, WBC, Hb, and Ht values, while having no notable impact on TC. Fish captured at an average depth of 80 m and with a trawling duration of 30 min exhibited significantly elevated hematological indices. Conclusion: This study demonstrates that hematological analysis is a valuable, cost-effective tool for assessing the physiological and health status of European hake populations in the Mediterranean. Notable differences in hematological parameters based on sex, as well as significant correlations among key blood metrics, underscore the importance of understanding species-specific hematological profiles. The influence of trawling depth and duration on certain blood parameters highlights the need for standardized sampling protocols in population health assessments. These findings contribute essential baseline hematological data for European hake, facilitating more informed fisheries management and conservation strategies.

Keywords
Hematology
Bottom otter trawl
Toroneos Gulf
Northern Greece
Funding
This work was supported by the Region of Central Macedonia- Region of Halkidiki.
References
  1. Golani D, Oztürk B, Başusta N. Fishes of the Eastern Mediterranean. Istanbul: Turkish Marine Research Foundation Istanbul; 2006.

 

  1. Froese R, Pauly D. FishBase. World Wide Web Electronic Publication; 2023. Available from: https://www.fishbase.org [Last accessed on 2024 October 05].

 

  1. Cohen DM, Inada T, Iwamoto T, Scialabba, N. Gadiform fishes of the world. FAO Fish Synopsis. 1990;10:442

 

  1. Katsanevakis S, Maravelias CD, Vassilopoulou V. Otter trawls in Greece: Landing profiles and potential mιtiers. Mediterr Mar Sci. 2010;11:43-60. doi: 10.12681/mms.90

 

  1. Kori-Siakpere O, Ake JEG, Idoge E. Haematological characteristics of the African snakehead, Parachanna obscura. Afr J Biotechnol. 2005;4:527-530.

 

  1. Witeska M, Kondera E, Ługowska K, Bojarski B. Hematological methods in fish-not only for beginners. Aquaculture. 2022;547:737498. doi: 10.1016/j.aquaculture.2021.737498

 

  1. Ivanc A, Haskovic E, Jeremic S, DekiÊ R. Hematological evaluation of welfare and health of fish. Prax Vet. 2005;53:191-202.

 

  1. Clauss TM, Dove ADM, Arnold JE. Hematologic disorders of fish. Vet Clin North Am Exot Anim Pract. 2008;11:445-462. doi: 10.1016/j.cvex.2008.03.007

 

  1. Grant KR. Fish hematology and associated disorders. Vet Clin Exot Anim Pract. 2015;8:83-103. doi: 10.1016/j.cvex.2014.09.007

 

  1. Docan A, Grecu I, Dediu L. Use of hematological parameters as assessment tools in fish health status. J Agrolimentary Process Technol. 2018;24:317-324.

 

  1. Fazio F. Fish hematology analysis as an important tool of aquaculture: A review. Aquaculture. 2019;500:237-242. doi: 10.1016/j.aquaculture.2018.10.030

 

  1. Oluyemi KG, Adeparusi EA, Olanrewaju J. Basic heamatological parameters in African Catfish, Clarias gariepinus (Burchell, 1822). FED ascorbic acid supplemented diets. Res J Anim Sci. 2008;2:17-21.

 

  1. Michail G, Berillis P, Nakas C, Henry M, Mente E. Haematology reference values for Dicentrarchus labrax and Sparus aurata: A systematic review and meta-analysis. J Fish Dis. 2022;45:1549-1570.

 

  1. Field JB, Elvehjem CA, Juday GA study of the blood constituents of carp and trout. J Biol Chem. 1943;148:261-269. doi: 10.1016/s0021-9258(18)72280-1

 

  1. Cooke SJ, Lawrence MJ, Raby GD, et al. Comment: Practices for drawing blood samples from teleost fish. N Am J Aquac. 2019;81:424-426. doi: 10.1002/naaq.10115

 

  1. Fazio F, Saoca C, Costa G, Zumbo A, Piccione G, Parrino V. Flow cytometry and automatic blood cell analysis in striped bass Morone saxatilis (Walbaum, 1792): A new hematological approach. Aquaculture. 2019;513:734398. doi: 10.1016/j.aquaculture.2019.734398

 

  1. Lambert FN, Treberg JR, Anderson WG, Brandt C, Evans AN. The physiological stress response of the Atlantic stingray (Hypanus sabinus) to aerial exposure. Comp Biochem Physiol A Mol Integr Physiol. 2018;219-220:38-43. doi: 10.1016/j.cbpa.2018.02.009

 

  1. Seibel H, Baßmann B, Rebl A. Blood will tell: What hematological analyses can reveal about fish welfare. Front Vet Sci. 2021;8:616955. doi: 10.3389/fvets.2021.616955

 

  1. Fánge R. Fish Blood Cells. Fish Physiol. 1992;12:1-54.

 

  1. Pearson MP, Stevens ED. Size and hematological impact of the splenic erythrocyte reservoir in rainbow trout, Oncorhynchus mykiss. Fish Physiol Biochem. 1991;9:39-50. doi: 10.1007/bf01987610

 

  1. Ueda IK, Egami MI, da Silva Sassp W, Matushima ER. Estudos hematológicos em Oreochromis niloticus (Linnaeus, 1758) (Cichlidae, Teleostei)-Parte I. Braz J Vet Res Anim Sci. 1997;34:270-275. doi: 10.11606/issn.2318-3659.v34i5p270-275

 

  1. Pradhan SC, Patra AK, Sarkar B, Pal A. Seasonal changes in hematological parameters of Catla catla (Hamilton 1822). Comp Clin Path. 2012;21:1473-1481. doi: 10.1007/s00580-011-1316-2

 

  1. Prasad G, Charles S. Haematology and leucocyte enzyme cytochemistry of a threatened yellow catfish Horabagrus brachysoma (Gunther 1864). Fish Physiol Biochem. 2010;36:435-443. doi: 10.1007/s10695-009-9313-y

 

  1. Wedemeyer GA, Gould RW, Yasutake WT. Some potentials and limits of the leucocrit test as a fish health assessment method. J Fish Biol. 1983;23:711-716. doi: 10.1111/j.1095-8649.1983.tb02948.x

 

  1. Sharma NK, Akhtar MS, Pandey NN, Singh R, Singh AK. Sex specific seasonal variation in hematological and serum biochemical indices of Barilius bendelisis from Central Himalaya, India. Proc Natl Acad Sci India Sect B Biol Sci. 2017;87:1185-1197. doi: 10.1007/s40011-015-0692-9

 

  1. Barton BA, Iwama GK. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis. 1991;1:3-26. doi: 10.1016/0959-8030(91)90019-G

 

  1. Groff JM, Zinkl JG. Hematology and clinical chemistry of cyprinid fish. Common carp and goldfish. Vet Clin North Am Exot Anim Pract. 1999;2:741-776. doi: 10.1016/s1094-9194(17)30120-2

 

  1. Carbajal A, Soler P, Tallo-Parra O, et al. Towards non-invasive methods in measuring fish welfare: The measurement of cortisol concentrations in fish skin mucus as a biomarker of habitat quality. Animals (Basel). 2019;9:939. doi: 10.3390/ani9110939

 

  1. Bojarski B, Kondera E, Witeska M, Lugowska K. Differences in hematological values of common carp between cardiac and venous blood. Bull Eur Assoc Fish Pathol. 2018;38:235.

 

  1. Lugowska K, Kondera E, Witeska M. Leukocyte count in fish-possible sources of discrepancy. Bull Eur Assoc Fish Pathol. 2017;37:94-99.

 

  1. Walencik J, Witeska M. The effects of anticoagulants on hematological indices and blood cell morphology of common carp (Cyprinus carpio L.). Comp Biochem Physiol C Toxicol Pharmacol. 2007;146:331-335. doi: 10.1016/j.cbpc.2007.04.004

 

  1. Bojarski B, Socha M, Drąg-Kozak E, et al. Does the site of blood collection in fish affect haematological and blood biochemical results? Folia Biol. 2021;69:51-56. doi: 10.3409/fb_69-2.07

 

  1. Tavares-Dias M, Ruas de Moraes F. Hematological parameters for the Brycon orbignyanus Valenciennes, 1850 (Osteichthyes: Characidae) intensively bred. Hidrobiológica. 2006;16:271-274.

 

  1. Fazio F, Marafioti S, Filiciotto F, Buscaino G, Panzera M, Faggio C. Blood hemogram profiles of farmed onshore and offshore gilthead sea bream (Sparus aurata) from Sicily, Italy. Turkish J Fish Aquat Sci. 2013;13:415-422. doi: 10.4194/1303-2712-v13_3_04

 

  1. Faggio C, Arfuso F, Piccione G, Zumbo A, Fazio F. Effect of three different anticoagulants and storage time on haematological parameters of Mugil cephalus (Linneaus, 1758). Turkish J Fish Aquat Sci. 2014;14:615-621. doi: 10.4194/1303-2712-v14_3_03

 

  1. Rożyński M, Demska-Zakęś K, Sikora A, Zakęś Z. Impact of inducing general anesthesia with Propiscin (etomidate) on the physiology and health of European perch (Perca fluviatilis L.). Fish Physiol Biochem. 2018;44:927-937. doi: 10.1007/s10695-018-0482-4

 

  1. Fazio F, Faggio C, Marafioti S, Torre A, Sanfilippo M, Piccione G. Comparative study of haematological profile on Gobius niger in two different habitat sites: Faro Lake and Tyrrhenian Sea. Cah Biol Mar. 2012;53:213-219.

 

  1. Casillas E, Smith LS. Effect of stress on blood coagulation and haematology in rainbow trout (Salmo gairdneri). J Fish Biol. 1977;10:481-491.

 

  1. Collazos ME, Ortega E, Barriga C, Rodrìguez AB. Seasonal variation in haematological parameters in male and female Tinca tinca. Mol Cell Biochem. 1998;183:165-168. doi: 10.1023/a:1006878922332

 

  1. Hickey CR Jr. Comparative hematology of wild and captive cunners. Trans Am Fish Soc. 1982;111:242-249. doi: 10.1577/1548-8659(1982)111%3C242:chowac%3E2.0.co;2

 

  1. Garcia MP, Echevarria G, Martinez FJ, Zamora S. Influence of blood sample collection on the haematocrit value of two teleosts: Rainbow trout (Oncorhynchus mykiss) and European sea bass (Dicentrarchus labrax L.). Comp Biochem Physiol Comp Physiol. 1992;101:733-736. doi: 10.1016/0300-9629(92)90351-P

 

  1. Cech JJ Jr., Wohlschlag DE. Seasonal patterns of respiration, gill ventilation, and hematological characteristics in the striped mullet, Mugil cephalus L. Bull Mar Sci. 1982;32:130-138.

 

  1. Chakrabarty P, Banerjee V. Effect of organophosphorus pesticides on the peripheral hemogram of the fish Channa punctatus. Environ Ecol. 1988;6:390-394.

 

  1. Orun I, Dorucu M, Yazlak H. Haematological parameters of three cyprinid fish species from Karakaya Dam Lake, Turkey. J Biol Sci. 2003;3:320-328. doi: 10.3923/jbs.2003.320.328

 

  1. Parrino V, Cappello T, Costa G, et al. Comparative study of haematology of two teleost fish (Mugil cephalus and Carassius auratus) from different environments and feeding habits. Eur Zool J. 2018;85:193-199 doi: 10.1080/24750263.2018.1460694

 

  1. Nikolsky CV. The Ecology of Fishes. London, New York: Academic Press; 1978. p. 352.

 

  1. Cokkoy DA, Rodriguez JL. Hematological study of the hake (Merluccius merluccius) from the Southwest Atlantic. J Fish Board Canada. 1965;22:869-871.

 

  1. Larsson ÅK, Johansson-Sjöbeck M, Fänge R. Comparative study of some haematological and biochemical blood parameters in fishes from the Skagerrak. J Fish Biol. 1976;9:425-440.

 

  1. Tavares-Dias M, Oliveira SR. A review of the blood coagulation system of fish. Rev Bras Biociências. 2009;7(2):205-224.

 

  1. Osman AGM, AbouelFadl KY, Abd El Reheem AEB, Mahmoud UM, Kloas W, Moustafa MA. Blood biomarkers in Nile tilapia Oreochromis niloticus niloticus and African catfish Clarias gariepinus to evaluate water quality of the river Nile. J Fish Sci. 2018;12:1-15.

 

  1. Lawrence MJ, Raby GD, Teffer AK, et al. Best practices for non-lethal blood sampling of fish via the caudal vasculature. J Fish Biol. 2020;97:4-15. doi: 10.1111/jfb.14339

 

  1. Witeska M, Teodorczuk B, Lugowska K. Hematological effects of etomidate and tricaine in common carp. Turkish J Vet Anim Sci. 2017;41:93-98. doi: 10.3906/vet-1603-30

 

  1. Soldatov AA. Functional effects of the use of anesthetics on teleostean fishes. Inl Water Biol. 2021;14:67-77. doi: 10.1134/S1995082920060139

 

  1. Faggio C, Casella S, Arfuso F, Marafioti S, Piccione G, Fazio F. Effect of storage time on haematological parameters in mullet, Mugil cephalus. Cell Biochem Funct. 2013;31:412-416. doi: 10.1002/cbf.2915

 

  1. Underwood AJ. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge, UK: Cambridge University Press; 1997. p. 524.

 

  1. Krishnamoorthy K, Lu F, Mathew T. A parametric bootstrap approach for ANOVA with unequal variances: Fixed and random models. Comput Stat Data Anal. 2007;51:5731-5742. doi: 10.1016/j.csda.2006.09.039

 

  1. Rutherford A. ANOVA and ANCOVA: A GLM Approach. United States: John Wiley and Sons; 2011. p. 360.

 

  1. Yang Y, Sánchez-Tójar A, O’Dea RE, et al. Publication bias impacts on effect size, statistical power, and magnitude (Type M) and sign (Type S) errors in ecology and evolutionary biology. BMC Biol. 2023;21:1-20. doi: 10.32942/osf.io/97nv6

 

  1. Peng CYJ, Chen LT. Beyond Cohen’s d: Alternative effect size measures for between-subject designs. J Exp Educ. 2014;82:22-50. doi: 10.1080/00220973.2012.745471

 

  1. Guillou M, Lumingas LJL. Variation in the reproductive strategy of the sea urchin Sphaerechinus granularis (Echinodermata: Echinoidea) related to food availability. J Mar Biol Assoc United Kingdom. 1999;79:131-136. doi: 10.1017/S0025315498000149

 

  1. Ricker WE. Computation and interpretation of biological statistics of fish populations. Bull Fish Res Board Can. 1975;191:1-382.

 

  1. Lambert Y, Dutil JD. Can simple condition indices be used to monitor and quantify seasonal changes in the energy reserves of Atlantic cod (Gadus morhua)? Can J Fish Aquat Sci. 1997;54:104-112. doi: 10.1139/cjfas-54-S1-104

 

  1. Celik ES. Blood chemistry (electrolytes, lipoproteins and enzymes) values of black scorpion fish (Scorpaena porcus Linneaus, 1758) in the Dardanelles, Turkey. J Biol Sci. 2004;4:716-719. doi: 10.3923/jbs.2004.716.719

 

  1. Paul T, Shukla S.P, Kumar K, Poojary N, Kumar S. Effect of temperature on triclosan toxicity in Pangasianodon hypophthalmus (Sauvage, 1878): Hematology, biochemistry and genotoxicity evaluation. Sci Total Environ. 2019;668:104-114. doi: 10.1016/j.scitotenv.2019.02.443

 

  1. Houston AH. Are the classical hematological variables acceptable indicators of fish health? Oceanogr Lit Rev. 1998;9:1678.

 

  1. Ahmed I, Sheikh ZA. Comparative study of hematological parameters of snow trout Schizopyge plagiostomus and Schizopyge niger inhabiting two different habitats. Eur Zool J. 2020;87:12-19. doi: 10.1080/24750263.2019.1705647

 

  1. Magnadóttir B. Innate immunity of fish (overview). Fish Shellfish Immunol. 2006;20:137-151. doi: 10.1016/j.fsi.2004.09.006

 

  1. Stosik M, Deptuia W, Travnicek M, Baldy-Chudzik K. Phagocytic and bactericidal activity of blood thrombocytes in carps (Cyprinus carpio). Vet Med. 2001;47:21-25. doi: 10.17221/5798-VETMED

 

  1. Gebretsadkan G, Tessema K, Ambachew H, Birhaneselassie M. The comparison between microhematocrit and automated methods for hematocrit determination. Int J Blood Res Disord. 2015;2:012. doi: 10.23937/2469-5696/1410012

 

  1. McBeath A, Aamelfot M, Christiansen DH, et al. Immersion challenge with low and highly virulent infectious salmon anaemia virus reveals different pathogenesis in Atlantic salmon, Salmo salar L. J Fish Dis. 2015;38:3-15. doi: 10.1111/jfd.12253

 

  1. Witeska M, Dudyk J, Jarkiewicz N. Haematological effects of 2-phenoxyethanol and etomidate in carp (Cyprinus carpio L.). Vet Anaesth Analg. 2015;42:537-546. doi: 10.1111/vaa.12242

 

  1. De Souza PC, Bonilla-Rodriguez GO. Fish hemoglobins. Brazilian J Med Biol Res. 2007;40:769-778. doi: 10.1590/S0100-879X2007000600004

 

  1. Witeska M. Erythrocytes in teleost fishes: A review. Zool Ecol. 2013;23:275-281. doi: 10.1080/21658005.2013.846963

 

  1. Sopinka NM, Donaldson MR, O’Connor CM, Suski CD, Cooke SJ. Stress indicators in fish. Fish Physiol. 2016;35: 405-462.

 

  1. Witeska M. Anemia in teleost fishes. Bull Eur Assoc Fish Pathol. 2015;35:148-160.

 

  1. Swift DJ. The blood haemoglobin concentration of the Atlantic mackerel (Scomber scombrus L.). Comp Biochem Physiol A Physiol. 1982;73:229-232. doi: 10.1016/0300-9629(82)90060-3

 

  1. Burton CB, Murray SA. Effects of density on goldfish blood-I hematology. Comp Biochem Physiol A Physiol. 1979;62: 555-558. doi: 10.1016/0300-9629(79)90101-4

 

  1. Houston AH, DeWilde MA. Some observations upon the relationship of microhaematocrit values to haemoglobin concentrations and erythrocyte numbers in the carp Cyprinus carpio L. and brook trout Salvelinus fontinalis (Mitchill). J Fish Biol. 1972;4:109-115. doi: 10.1111/j.1095-8649.1972.tb05659.x

 

  1. Munkittrick KR, Leatherland JF. Haematocrit values in feral goldfish, Carassius auratus L, as indicators of the health of the population. J Fish Biol. 1983;23:153-161. doi: 10.1111/j.1095-8649.1983.tb02890.x

 

  1. Pascoli F, Lanzano GS, Negrato E, et al. Seasonal effects on hematological and innate immune parameters in sea bass Dicentrarchus labrax. Fish Shellfish Immunol. 2011;31: 1081-1087. doi: 10.1016/j.fsi.2011.09.014

 

  1. Burgos-Aceves M.A, Lionetti L, Faggio C. Multidisciplinary haematology as prognostic device in environmental and xenobiotic stress-induced response in fish. Sci Total Environ. 2019;670:1170-1183. doi: 10.1016/j.scitotenv.2019.03.275

 

  1. Bosisio F, Rezende KFO, Barbieri E. Alterations in the hematological parameters of juvenile Nile tilapia (Oreochromis niloticus) submitted to different salinities. Pan Am J Aquat Sci. 2017;12:146-154.

 

  1. Elarabany N, Bahnasawy M, Edrees G, Alkazagli R. Effects of salinity on some haematological and biochemical parameters in Nile tilapia, Oreochromus niloticus. Agric For Fish. 2017;6:200-205. doi: 10.11648/j.aff.20170606.13

 

  1. Girling P, Purser J, Nowak B. Effects of acute salinity and water quality changes on juvenile greenback flounder, Rhombosolea tapirina (Gżnther, 1862). Acta Ichthyol Piscat. 2003;33:1-16. doi: 10.3750/AIP2003.33.1.01

 

  1. Anyanwu PE, Gabriel UU, Anyanwu AO, Akinrotimi OA. Effect of salinity changes on haematological parameters of Sarotherodon melanotheron from Buguma Creek, Niger Delta. J Anim Vet Adv. 2007;6:658-662.

 

  1. Alvarez-Pellitero P, Pintó RM. Some blood parameters in sea bass, Dicentrarchus labrax, infected by bacteria, virus and parasites. J Fish Biol. 1987;31:259-261. doi: 10.1111/j.1095-8649.1987.tb05330.x

 

  1. Dendrinos P, Thorpe JP. Effects of reduced salinity on growth and body composition in the European bass Dicentrarchus labrax (L.). Aquaculture. 1985;49:333-358. doi: 10.1016/0044-8486(85)90090-0

 

  1. Zanuy S, Carrillo M. Annual cycles of growth, feeding rate, gross conversion efficiency and hematocrit levels of sea bass (Dicentrarchus labrax L.) adapted to two different osmotic media. Aquaculture. 1985;44:11-25. doi: 10.1016/0044-8486(85)90038-9

 

  1. Fourie FR, van Vuren JHJ. A seasonal study of the haematology of carp (Cyprinus carpio) from a locality in the Transvaal, South Africa. Afr Zool. 1976;11:75-80.

 

  1. Raizada MN, Jain KK, Raizada S. Monthly variation in the haematocrit values (PCV) in a teleost, Cirrhinus mrigala (Ham.). Comp Physiol Ecol. 1983;8:190-196.

 

  1. Papaconstantinou C, Politou CY, Caragitsou E, et al. Investigations on the Abundance and Distribution of Demersal Stocks of Primary Importance in the Thermaikos Gulf and the Thracian Sea (Hellas). National Centre for Marine Research, Athens. Athens, Technical Report, North Aegean Series 4/1994. Hellenic; 1994.

 

  1. Rizzo E, Bazzoli N. Reproduction and embryogenesis. In: Biology and Physiology of Freshwater Neotropical Fish. Netherlands: Elsevier; 2020. p. 287-313. doi: 10.1016/B978-0-12-815872-2.00013-0

 

  1. Foster AR, Houlihan DF, Hall SI. Effects of nutritional regime on correlates of growth rate in juvenile Atlantic cod (Gadus morhua): Comparison of morphological and biochemical measurements. Can J Fish Aquat Sci. 1993;50:502-512. doi: 10.1139/f93-059

 

  1. Domínguez-Petit R, Saborido-Rey F, Medina I. Changes of proximate composition, energy storage and condition of European hake (Merluccius merluccius, L. 1758) through the spawning season. Fish Res. 2010;104:73-82. doi: 10.1016/j.fishres.2009.05.016

 

  1. Costa AM. Somatic condition, growth and reproduction of hake, Merluccius merluccius L, in the Portuguese coast. Open J Mar Sci. 2013;3:12-30. doi: 10.4236/ojms.2013.31002

 

  1. Cantafaro A, Ardizzone G, Enea M, Ligas, A, Colloca F. Assessing the importance of nursery areas of European hake (Merluccius merluccius) using a body condition index. Ecol Indic. 2017;81:383-389. doi: 10.1016/j.ecolind.2017.06.012

 

  1. Kareem OK, Ajani EK, Orisasona O, Olanrewaju AN. The sex ratio, gonadosomatic index, diet composition and fecundity of African Pike, Hepsetus odoe (Bloch, 1794) in Eleyele lake, Nigeria. J Fish Livest Prod. 2015;3:2. doi: 10.4172/2332-2608.1000139

 

  1. Nash RDM, Valencia AH, Geffen AJ. The origin of Fulton’s condition factor-setting the record straight. Fisheries. 2006;31:236-238.

 

  1. Ahmed I, Sheikh ZA. Hematological and serum biochemical parameters of five freshwater snow trout fish species from river Jhelum of Kashmir Himalaya, India. Comp Clin Pathol. 2019;28:771-782. doi: 10.1007/s00580-019-02909-y
Conflict of interest
The authors declare no conflict of interest. The funders had no role in the design of the study in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.
Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific