POL Scientific / JBM / Volume 11 / Issue 4 / DOI: 10.14440/jbm.2024.0055
Cite this article
40
Download
26
Citations
246
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Reappraisal of the fundamental mechanisms of the sHA14-1 molecule as a Bcl-2/Bcl-XL ligand in the context of anticancer therapy: A cell biological study

Aoula Moustapha1,2† Pauline Andreu2† François Gonzalvez2† Delphine Fradin2 Jean-Pierre Tissier3 Phillippe Diolez4,5 Patrice Xavier Petit1,2*
Show Less
1 National Center for Scientific Research UMR 8003, Paris City University, SSPIN Neuroscience Institute, Saint-Germain Campus, Paris, Île de France 75006, France
2 Department of Genetic and Development, INSERM U567/National Center for Scientific Research UMR 8104, Cochin Institut, Paris 750014, France
3 Laboratory of Process Engineering and Food Technologies, INRA Lille Research Center, Villeneuve D’Ascq Cedex, Hauts-de-France 59591, France
4 IHU Liryc, Bordeaux University Foundation, Pessac, Bordeaux, Nouvelle-Aquitaine 33000, France
5 National Institute of Health and Medical Research, Cardio-Thoracic Research Center, Bordeaux, Nouvelle-Aquitaine 33000, France
JBM 2024 , 11(4), e99010040; https://doi.org/10.14440/jbm.2024.0055
Submitted: 12 August 2024 | Revised: 26 August 2024 | Accepted: 5 November 2024 | Published: 30 December 2024
© 2024 by the Journal of Biological Methods published by POL Scientific. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Background: HA14-1 is a small-molecule, stable B-cell lymphoma 2 (Bcl-2) antagonist that promotes apoptosis in malignant cells through an incompletely-defined mechanism of action. Bcl-2 and related anti-apoptotic proteins, such as B-cell lymphoma-extra-large [Bcl-XL]), are predominantly localized to the outer mitochondrial membrane, where they regulate cell death pathways. However, the notably short half-life of HA14-1 in vitro limits its potential therapeutic application. To address this limitation, a more stable analog, ethyl-2-amino-6-phenyl-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (sHA14-1), was developed. Objective: This study investigated the relationship between sHA14-1 and Bcl-2/Bcl-XL. The sHA14-1 molecule acts as a hormetic substance. Therefore, it is crucial to determine whether the hormetic zone corresponds to a putative therapeutic window, that is, the optimal concentration at which sHA14-1 selectively kills cancer cells overexpressing Bcl-2 or Bcl-XL while causing minimal damage to normal cells. Methods: Using classical cell biology and flow cytometry, we examined the main signaling pathways involving Bcl-2 or Bcl-XL, and their modification in the presence of sHA14-1. Results: We showed that sHA14-1 exerted a dual effect on mitochondria: (i) it sensitized cells to increased permeability, and (ii) it inhibited adenosine diphosphate-stimulated respiration and uncoupled respiration. At relatively low concentrations, sHA14-1 induced mitochondrial swelling, reminiscent of “pore opening” but with distinct characteristics. Over 30 μM, sHA14-1 caused mitochondrial transition depolarization independent of permeability transition and cell death that resembled secondary necrosis (i.e., occurring after maximal mitochondrial permeability) rather than apoptosis. The balance between apoptotic and necrotic cell death induced by sHA14-1 was also evaluated. Conclusion: Our results suggested that sHA14-1 plays a multifunctional role, involving both mitochondria and the endoplasmic reticulum. Its actions are more complex than its originally intended role in targeting anti-apoptotic Bcl-2 family members, which may complicate its potential application as an anticancer therapy.

Keywords
Apoptosis
Bcl-2/Bcl-XL ligand
Bioenergetic
Calcium
Cancer therapy
Mitochondria
PTP pore mitochondria
sHA14-1
Funding
This work was supported by funding dedicated to fundamental research from the National Center for Scientific Research (CNRS) and the National Institute of Health and Medical Research (INSERM).
References
  1. Reed JC. Apoptosis-based therapies. Nat Rev Drug Discov. 2002;1(2):111-121. doi: 10.1038/nrd726

 

  1. Tsujimoto Y, Shimizu S. Bcl-2 family: Life-or-death switch. FEBS Lett. 2000;466(1):6-10. doi: 10.1016/s0014-5793(99)01761-5

 

  1. Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci. 2001;26(1):61-66. doi: 10.1016/s0968-0004(00)01740-0

 

  1. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell. 2010;37(3):299-310. doi: 10.1016/j.molcel.2010.01.025

 

  1. Tsujimoto Y, Cossman J, Jaffe E, Croce C. Involvement of the bcl-2 gene in human follicular lymphona. Science. 1985;228:1440-1443. doi: 10.1126/science.3874430

 

  1. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC. Investigation of the subcellular distribution of the Bcl- 2 oncoprotein: Residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 1993;53:4701-4714.

 

  1. Rong Y, Distelhorst CW. Bcl-2 protein family members: Versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol. 2008;70:73-91. doi: 10.1146/annurev.physiol.70.021507.105852

 

  1. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008;27(50):6407-6418. doi: 10.1038/onc.2008.308

 

  1. Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome C release to the cytosol. J Cell Biol. 2003l;160(7):1115-1127. doi: 10.1083/jcb.200212059

 

  1. Rong YP, Bultynck G, Aromolaran AS, et al. The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc Natl Acad Sci U S A. 2009;106(34):14397-1402. doi: 10.1073/pnas.0907555106

 

  1. Eckenrode EF, Yang J, Velmurugan GV, Foskett JK, White C. Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem. 2010;285(18):13678-13684. doi: 10.1074/jbc.M109.096040

 

  1. White C, Li C, Yang J, et al. The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol. 2005;7(10):1021-1028. doi: 10.1038/ncb1302

 

  1. Chen R, Valencia I, Zhong F, et al. Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol. 2004;166(2):193-203. doi: 10.1083/jcb.200309146

 

  1. Li C, Fox CJ, Master SR, Bindokas VP, Chodosh LA, Thompson CB. Bcl-X(L) affects Ca(2+) homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A. 2002;99(15):9830-9835. doi: 10.1073/pnas.152571899

 

  1. Li C, Wang X, Vais H, Thompson CB, Foskett JK, White C. Apoptosis regulation by Bcl-x(L) modulation of mammalian inositol 1,4,5-trisphosphate receptor channel isoform gating. Proc Natl Acad Sci U S A. 2007;104(30):12565-12570. doi: 10.1073/pnas.0702489104

 

  1. Sharov VS, Dremina ES, Galeva NA, Williams TD, Schoneich C. Quantitative mapping of oxidation-sensitive cysteine residues in SERCA in vivo and in vitro by HPLC-electrospray-tandem MS: Selective protein oxidation during biological aging. Biochem J. 2006;394(Pt 3):605-615. doi: 10.1042/BJ20051214

 

  1. Dremina ES, Sharov VS, Kumar K, Zaidi A, Michaelis EK, Schoneich C. Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+- ATPase (SERCA). Biochem J. 2004;383(Pt 2):361-370. doi: 10.1042/BJ20040187

 

  1. Hanson CJ, Bootman MD, Distelhorst CW, Wojcikiewicz RJ, Roderick HL. Bcl-2 suppresses Ca2+ release through inositol 1,4,5-trisphosphate receptors and inhibits Ca2+ uptake by mitochondria without affecting ER calcium store content. Cell Calcium. 2008;44(3):324-338. doi: 10.1016/j.ceca.2008.01.003

 

  1. Ahmad S, Ahmad A, Dremina ES, et al. Bcl-2 suppresses sarcoplasmic/endoplasmic reticulum Ca2+-ATPase expression in cystic fibrosis airways: Role in oxidant-mediated cell death. Am J Respir Crit Care Med. 2009;179(9):816-826. doi: 10.1164/rccm.200807-1104OC

 

  1. Dremina ES, Sharov VS, Schoneich C. Displacement of SERCA from SR lipid caveolae-related domains by Bcl-2: A possible mechanism for SERCA inactivation. Biochemistry. 2006;45(1):175-184. doi: 10.1021/bi050800s

 

  1. Rizzuto R, Pinton P, Carrington W, et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998;280(5370):1763-1766. doi: 10.1126/science.280.5370.1763

 

  1. Gouriou Y, Gonnot F, Wehbi M, Brun C, Gomez L, Bidaux G. High-sensitivity calcium biosensor on the mitochondrial surfacereveals that IP3R channels participate in the reticular Ca2+ leak towards mitochondria. PLoS One. 2023;18(6):e0285670. doi: 10.1371/journal.pone.0285670

 

  1. Demaurex N, Distelhorst C. Cell biology. Apoptosis--the calcium connection. Science. 2003;300(5616):65-67. doi: 10.1126/science.1083628

 

  1. Lee DI, Sumbilla C, Lee M, et al. Mechanisms of resistance and adaptation to thapsigargin in androgen-independent prostate cancer PC3 and DU145 cells. Arch Biochem Biophys. 2007;464(1):19-27. doi: 10.1016/j.abb.2007.03.040

 

  1. Liu X, Lee K, Herbison AE. Kisspeptin excites gonadotropin-releasing hormone neurons through a phospholipase C/ calcium-dependent pathway regulating multiple ion channels. Endocrinology. 2008;149(9):4605-4614. doi: 10.1210/en.2008-0321

 

  1. Denmeade SR, Isaacs JT. The SERCA pump as a therapeutic target: Making a “smart bomb” for prostate cancer. Cancer Biol Ther. 2005;4(1):14-22. doi: 10.4161/cbt.4.1.1505

 

  1. O’Neill JP, Velalar CN, Lee DI, et al. Thapsigargin resistance in human prostate cancer cells. Cancer. 2006;107(3):649-659. doi: 10.1002/cncr.22027

 

  1. Bollig A, Xu L, Thakur A, Wu J, Kuo TH, Liao JD. Regulation of intracellular calcium release and PP1alpha in a mechanism for 4-hydroxytamoxifen-induced cytotoxicity. Mol Cell Biochem. 2007;305(1-2):45-54. doi: 10.1007/s11010-007-9526-2

 

  1. Reed JC. Mechanisms of apoptosis avoidance in cancer. Curr Opin Oncol. 1999;11(1):68-75. doi: 10.1097/00001622-199901000-00014

 

  1. Jansen B, Schlagbauer-Wadl H, Brown BD, et al. bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat Med. 1998;4(2):232-234. doi: 10.1038/nm0298-232

 

  1. Huang Z. Bcl-2 family proteins as targets for anticancer drug design. Oncogene. 2000;19(56):6627-6631. doi: 10.1038/sj.onc.1204087

 

  1. Liu D, Huang Z. Synthetic peptides and non-peptidic molecules as probes of structure and function of Bcl-2 family proteins and modulators of apoptosis. Apoptosis. 2001;6(6):453-462. doi: 10.1023/A:1012481406064

 

  1. Muchmore SW, Sattler M, Liang H, et al. X-ray and NMR structure of human Bcl-xL, and inhibitor of programmed cell death. Nature. 1996;381:335-341. doi: 10.1038/381335a0

 

  1. Sattler M, Liang H, Nettesheim D, et al. Structure of BCl- XL-Bak peptide complex: Recognition between regulators of apoptosis. Science. 1997;275:983-986. doi: 10.1126/science.275.5302.983

 

  1. Ellerby HM, Arap W, Ellerby LM, et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med. 1999;5(9):1032-1038. doi: 10.1038/12469

 

  1. Wang JL, Zhang ZJ, Choksi S, et al. Cell permeable Bcl-2 binding peptides: A chemical approach to apoptosis induction in tumor cells. Cancer Res. 2000;60(6):1498-1502.

 

  1. Degterev A, Lugovskoy A, Cardone M, et al. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-XL. Nat Cell Biol. 2001;3:173-182. doi: 10.1038/35055085

 

  1. Lugovskoy AA, Degterev AI, Fahmy AF, et al. A novel approach for characterizing protein ligand complexes: Molecular basis for specificity of small-molecule Bcl-2 inhibitors. J Am Chem Soc. 2002;124(7):1234-1240. doi: 10.1021/ja011239y

 

  1. Tzung SP, Kim KM, Basanez G, et al. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol. 2001;3(2):183-191. doi: 10.1038/35055095

 

  1. Nakashima T, Miura M, Hara M. Tetrocarcin A inhibits mitochondrial functions of Bcl-2 and suppresses its anti-apoptotic activity. Cancer Res. 2000;60(5):1229-1235.

 

  1. Anether G, Tinhofer I, Senfter M, Greil R. Tetrocarcin-A- -induced ER stress mediates apoptosis in B-CLL cells via a Bcl-2--independent pathway. Blood. 2003;101(11):4561-4568. doi: 10.1182/blood-2002-08-2501

 

  1. Letai A. BCL-2: Found bound and drugged! Trends Mol Med. 2005;11(10):442-444. doi: 10.1016/j.molmed.2005.08.007

 

  1. Letai A. Pharmacological manipulation of Bcl-2 family members to control cell death. J Clin Invest. 2005;115(10):2648-2655. doi: 10.1172/JCI26250

 

  1. Tian D, Das SG, Doshi JM, Peng J, Lin J, Xing C. sHA 14-1, a stable and ROS-free antagonist against anti-apoptotic Bcl-2 proteins, bypasses drug resistances and synergizes cancer therapies in human leukemia cell. Cancer Lett. 2008;259(2):198-208. doi: 10.1016/j.canlet.2007.10.012

 

  1. Reed JC. Bcl-2-family proteins and hematologic malignancies: History and future prospects. Blood. 2008;111(7):3322-3330. doi: 10.1182/blood-2007-09-078162

 

  1. Hermanson D, Addo SN, Bajer AA, et al. Dual mechanisms of sHA 14-1 in inducing cell death through endoplasmic reticulum and mitochondria. Mol Pharmacol. 2009;76(3):667-678. doi: 10.1124/mol.109.055830

 

  1. Das SG, Doshi JM, Tian D, et al. Structure-activity relationship and molecular mechanisms of ethyl 2-amino-4-(2-ethoxy-2- oxoethyl)-6-phenyl-4h-chromene-3-carboxylate (sha 14-1) and its analogues. J Med Chem. 2009;52(19):5937-5949. doi: 10.1021/jm9005059

 

  1. Rehman K, Tariq M, Akash MS, Gillani Z, Qazi MH. Effect of HA14-1 on apoptosis-regulating proteins in HeLa cells. Chem Biol Drug Des. 2014;83(3):317-323. doi: 10.1111/cbdd.12245

 

  1. Wang JL, Liu D, Zhang ZJ, et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci U S A. 2000;97(13):7124-7129. doi: 10.1073/pnas.97.13.7124

 

  1. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol. 2001;3(11):E255-E263. doi: 10.1038/ncb1101-e255

 

  1. Hoth M, Button DC, Lewis RS. Mitochondrial control of calcium-channel gating: A mechanism for sustained signalingand transcriptional activation in T lymphocytes. Proc Natl Acad Sci U S A. 2000;97(19):10607-10612. doi: 10.1073/pnas.180143997

 

  1. Dolman NJ, Gerasimenko JV, Gerasimenko OV, Voronina SG, Petersen OH, Tepikin AV. Stable Golgi-mitochondria complexes and formation of Golgi Ca(2+) gradients in pancreatic acinar cells. J Biol Chem. 2005;280(16):15794-15799. doi: 10.1074/jbc.M412694200

 

  1. Csordas G, Thomas AP, Hajnoczky G. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J. 1999;18(1):96-108. doi: 10.1093/emboj/18.1.96

 

  1. Kamo N, Muratsugu M, Hongoh M, Kobatake Y. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol. 1979;49:105-121. doi: 10.1007/BF01868720

 

  1. Rottenberg H. Membrane potential and surface potential in mitochondria: Uptake and binding of lipophilic cations. J Membrane Biol. 1984;81:127-138. doi: 10.1007/BF01868977

 

  1. Gendron MC, Schrantz N, Metivier D, et al. Oxidation of pyridine nucleotides during Fas- and ceramide-induced apoptosis in Jurkat cells: Correlation with changes in mitochondria, glutathione depletion, intracellular acidification and caspase 3 activation. Biochem J. 2001;353(Pt 2):357-367.

 

  1. Filippin L, Magalhaes PJ, Di Benedetto G, Colella M, Pozzan T. Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J Biol Chem. 2003;278(40):39224-39234. doi: 10.1074/jbc.M302301200

 

  1. Kroemer G, Petit PX, Zamzami N, Vayssière JL, Mignotte B. The biochemistry of programmed cell death. FASEB J. 1995;9:1277-1287. doi: 10.1096/fasebj.9.13.7557017

 

  1. Tait SW, Green DR. Caspase-independent cell death: Leaving the set without the final cut. Oncogene. 2008;27(50): 6452-6461. doi: 10.1038/onc.2008.311

 

  1. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell. 1997;91(5):627-637. doi: 10.1016/s0092-8674(00)80450-x

 

  1. Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell. 1999;3(2):159-167. doi: 10.1016/s1097-2765(00)80307-x

 

  1. Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: Release of cytochrome C from mitochondria blocked. Science. 1997;275:1129-1132. doi: 10.1126/science.275.5303.1129

 

  1. An J, Chen Y, Huang Z. Critical upstream signals of cytochrome C release induced by a novel Bcl-2 inhibitor. J Biol Chem. 2004;279(18):19133-19140. doi: 10.1074/jbc.M400295200

 

  1. Hacki J, Egger L, Monney L, Conus S, Rosse T, Fellay I, Borner C. Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene. 2000;19(19):2286-2295. doi: 10.1038/sj.onc.1203592

 

  1. Wagner-Souza K, Echevarria-Lima J, Rodrigues LA, Reis M, Rumjanek VM. Resistance to thapsigargin-induced intracellular calcium mobilization in a multidrug resistant tumour cell line. Mol Cell Biochem. 2003;252(1-2):109-116. doi: 10.1023/a:1025586225941

 

  1. Wei H, Wei W, Bredesen DE, Perry DC. Bcl-2 protects against apoptosis in neuronal cell line caused by thapsigargin-induced depletion of intracellular calcium stores. J Neurochem. 1998;70(6):2305-2314. doi: 10.1046/j.1471-4159

 

  1. Rizzuto R, Pinton P, Ferrari D, et al. Calcium and apoptosis: Facts and hypotheses. Oncogene. 2003;22(53):8619-8627. doi: 10.1038/sj.onc.1207105

 

  1. Zecchini E, Siviero R, Giorgi C, Rizzuto R, Pinton P. Mitochondrial calcium signalling: Message of life and death. Ital J Biochem. 2007;56(4):235-242.

 

  1. Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R. A role for calcium in Bcl-2 action? Biochimie. 2002;84(2-3):195-201. doi: 10.1016/s0300-9084(02)01373-1

 

  1. Li L, Cao Z, Jia P, Wang Z. Calcium signals and caspase-12 participated in paraoxon-induced apoptosis in EL4 cells. Toxicol In Vitro. 2010;24(3):728-736. doi: 10.1016/j.tiv.2010.01.005

 

  1. Csordas G, Hajnoczky G. Sorting of calcium signals at the junctions of endoplasmic reticulum and mitochondria. Cell Calcium. 2001;29(4):249-262. doi: 10.1054/ceca.2000.0191

 

  1. Sergeev IN. Genistein induces Ca2+ -mediated, calpain/ caspase-12-dependent apoptosis in breast cancer cells. Biochem Biophys Res Commun. 2004;321(2):462-467. doi: 10.1016/j.bbrc.2004.06.173

 

  1. Xu J, Dong X, Huang DCS, Xu P, Zhao Q, Chen B. Current advances and future strategies for BCL-2 inhibitors: Potent weapons against cancers. Cancers (Basel). 2023;15(20):4957. doi: 10.3390/cancers15204957

 

  1. Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer. 2022;22(1):45-64. doi: 10.1038/s41568-021-00407-4

 

  1. Anderson MA, Deng J, Seymour JF, et al. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism. Blood. 2016;127(25):3215-3224. doi: 10.1182/blood-2016-01-688796

 

  1. Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):311-322. doi: 10.1056/NEJMoa1513257

 

  1. Roberts AW, Huang D. Targeting BCL2 with BH3 mimetics: Basic science and clinical application of venetoclax in chronic lymphocytic leukemia and related B cell malignancies. Clin Pharmacol Ther. 2017;101(1):89-98. doi: 10.1002/cpt.553

 

  1. Wilson WH, O’Connor OA, Czuczman MS, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: A phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11(12):1149-1159. doi: 10.1016/S1470-2045(10)70261-8

 

  1. Lacronique V, Mignon A, Fabre M, et al. Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice. Nature Med. 1996;2:80-86. doi: 10.1038/nm0196-80

 

  1. De la Coste A, Fabre M, McDonell N, et al. Differential protective effects of Bcl-xL and Bcl-2 on apoptotic liver injury in transgenic mice. Am J Physiol. 1999;277(3 Pt 1):G702-G708. doi: 10.1152/ajpgi.1999.277.3.G702

 

  1. De la Coste A, Fabre M, McDonnel N, et al. Bcl-XL and Bcl- 2 differentially block fas/CD95- and TNFa-induced apoptotic liver injury in transgenic mice. Am J Physiol. 1998;59: 5017-5022.

 

  1. Frey TG, Mannella CA. The internal structure of mitochondria. Trends Biochem Sci. 2000;25(7):319-324. doi: 10.1016/s0968-0004(00)01609-1
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific