POL Scientific / JBM / Volume 11 / Issue 4 / DOI: 10.14440/jbm.2024.0038
RESEARCH ARTICLE

Venom immunization: IgG/IgE titers, safety, risk, and methods of the VIPRBITEM cohort

Brian P. Hanley1* Gustavo Gross2
Show Less
1 Butterfly Sciences, Davis, CA, 95617, USA
2 University of Texas Rio Grande Valley School of Medicine, 1201 West University Drive, Edinburg, TX, 78539, USA
JBM 2024 , 11(4), e99010025; https://doi.org/10.14440/jbm.2024.0038
Submitted: 22 July 2024 | Revised: 17 August 2024 | Accepted: 27 August 2024 | Published: 24 October 2024
© 2024 by the Journal of Biological Methods published by POL Scientific. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Background: This is the first study to examine a cohort that engages in the practice of immunization with snake venoms. In this practice, either fresh wet venom or venom reconstituted from freeze-dried form is used in vaccination protocols to produce hyper-immunity to venom. Methods: This is a retrospective community-initiated collaborative research (CICR) project that collated the records of venom immunization. Records of schedules, formulations, photographs, medical records, and diaries were collated from existing practitioners and evaluated by inspection and interviews. One accidental bite was observed over 3 days, with vital signs, and photographic records of swelling taken to verify reality of the bite. Over 74 snake-genera man-years, and 24 man-years of injection data from 8 participants, for 22 species of venomous snakes from Elapidae and Viperidae are represented. Six of those participants had detailed records of date, dose and effects. Results: IgG titers to 6 venoms for 4 cohort members tested of 8 included 2 with clear hyper-immune status. IgE titers were elevated for some. In 861 injections, records showed a rate of atopy/anaphylaxis of 4.3% , an infection rate of 0.58% and an abscess rate of 1.51% . Serious adverse reactions were rare and these appeared to be linked to overly aggressive immunization schedules and formulation accidents. We note that greater cross-immunity of IgE over IgG is suggested. Two basic protocols were followed, one was an approximate one month interval, the other was one or more injection(s) per week. In 176 envenomations, 175 were without antivenom treatment, two hospitalizations occurred, and one received full antivenom treatment. Dry bites were not included in our dataset. Envenomations showed a 1.14% rate of atopy/anaphylaxis, a 0.57% rate of infection and a 1.7% rate of abscess. Conclusions: Immunization of humans to snakebite is effective, and reasonably safe with care. Injection records suggest immune cross-reactivity between ophidians within the same family, and better cross-reactivity within the same genera. A cohort participant was pronounced dead based on EEG, and then recovered without treatment. A neurotoxin case with “brain death” EEG should stay on life support for 6 weeks to allow time for the immune system to clear venom.

Keywords
Venom immunization
Self-immunization
Envenomation
Bill Haast
Funding
None.
References
  1. Lucan P. Cambridge, MA: Harvard University Press; Circa 60 AD; Available from: https://archive.org/stream/ lucancivilwarboo00lucauoft/lucancivilwarboo00lucauoft_ djvu/txt [Last accessed on 2018 Jan 10].

 

  1. Dio C. Dio’s Roman History. Vol LI.14: Google Digital Books; Circa 210 AD.

 

  1. Pinto S. How I Crossed Africa: From the Atlantic to the Indian Ocean, through Unknown Countries; Discovery of the Great Zambezi Affluents. Vol 2. London: Sampson Low, Marston, Searle and Rivington; 1881.

 

  1. Calmette A. Venoms: Venomous Animals and Antivenomous Serum-therapeutics. London: John Bale and Sons, and Danielsson, Ltd.; 1908.

 

  1. Carnochan FG, Adamson HC. Empire of the Snakes. London: Hutchinson and Co.; 1935.

 

  1. Webb GB, Powell D. Henry Sewall Physiologist and Physician. Baltimore: The John Hopkins Press; 1946.

 

  1. Haast WE, Winer ML. Complete and spontaneous recovery from the bite of a blue krait snake (Bungarus caeruleus). Am J Trop Med Hyg. 1955;4(6):1135-1137. doi: 10.4269/ajtmh.1955.4.1135

 

  1. Wiener S. Active immunization of man against the venom of the Australian tiger snake (Notechis scutatus). Am J Trop Med Hyg. 1960;9(3):284-292. doi: 10.4269/ajtmh.1960.9.284

 

  1. Flowers HH. Active immunization of a human being against Cobra (Naja naja) venom. Nature. 1963;200:1017-1018. doi: 10.1038/2001017b0

 

  1. Canan ED, Flowers HH. Cobra bite following immunization against cobra venom. JAMA. 1965;193:625-626. doi: 10.1001/jama.1965.03090070075034

 

  1. Kursh H. Cobras in His Garden. Goa: Harvey House; 1965.

 

  1. Klauber LM. Rattlesnakes: Their Habits, Life Histories and Influence on Mankind. Oakland, CA: University of California Press; 1979.

 

  1. Haast N. The official Web Site of Bill Haast: Snakebites and Immunization Miami, Florida: Miami Serpentarium Laboratories; Available from: https://www.billhaast.com/ serpentarium/immunization_snakebites.html [Last accessed on 2017 May 20].

 

  1. Israel BA, Schulz AJ, Parker EA, Becker AB. Community-based participatory research: Policy recommendations for promoting a partnership approach in health research. Educ Health (Abingdon). 2001;14(2):182-197. doi: 10.1080/13576280110051055

 

  1. Ball MP, Bobe JR, Chou MF, et al. Harvard personal genome project: Lessons from participatory public research. Genome Med. 2014;6(2):10. doi: 10.1186/gm52

 

  1. Moffett MW. Bit. Outside Online. Boulder: Outside; 2002. http://outside.away.com/outside/adventure/200204/200204_ bit_1.html

 

  1. Boyer LV. On 1000-fold pharmaceutical price markups and why drugs cost more in the United States than in Mexico. Am J Med. 2015;128(12):1265-1267. doi: 10.1016/j.amjmed.2015.08.007

 

  1. Joseph Pittman RN. North American Pit Viper Bite: Ranges of Vial Use for Envenomation. Personal Communication. Washington DC: CSPI; 2017.

 

  1. Himmelstein DU, Thorne D, Warren E, Woolhandler S. Medical bankruptcy in the United States, 2007: Results of a national study. Am J Med. 2009;122(8):741-746. doi: 10.1016/j.amjmed.2009.04.012

 

  1. McGhee S, Finnegan A, Clochesy JM, Visovsky C. Effects of snake envenomation: A guide for emergency nurses. Emerg Nurse. 2015;22(9):24-29. doi: 10.7748/en.22.9.24.e1406

 

  1. Spano SJ, Vohra R, Macias F. Long-term complications of rattlesnake bites: A telephone survey from Central California. Wilderness Environ Med. 2014;25(2):210-213. doi: 10.1016/j.wem.2013.11.004

 

  1. Benoit N. Links. Florida: Norman Benoit; 2005. Available from: https://web.archive.org/web/20111115174034; https:// normanbenoit.com/links.htm [Last accessed on 2017 Jun 23].

 

  1. Brown SG, Wiese MD, Van Eeden P, et al. Ultrarush versus semirush initiation of insect venom immunotherapy: A randomized controlled trial. J Allergy Clin Immunol. 2012;130(1):162-168. doi: 10.1016/j.jaci.2012.02.022

 

  1. Hanley BP, Gross G. Extraordinary variance in meta-analysis of venom toxicity of 160 most lethal ophidians, and guidelines for estimating human lethal dose range. J Biol Methods. 2024;11(3):e99010029. doi: 10.14440/jbm.2024.0037

 

  1. Hanly WC, Artwohl JE, Bennett BT. Review of polyclonal antibody production procedures in mammals and poultry. ILAR J. 1995;37(3):93-118. doi: 10.1093/ilar.37.3.93

 

  1. Johnson WE, Oyervides M, Forstner MR. Drymarchon melanurus erebennus (Texas Indigo Snake) Defensive behavior/death-feigning. Herpetol Rev. 2017;48(2):448.

 

  1. Chen CM, Wu KG, Chen CJ, Wang CM. Bacterial infection in association with snakebite: A 10-year experience in a Northern Taiwan medical center. J Microbiol Immunol Infect. 2011;44(6):456-460. doi: 10.1016/j.jmii.2011.04.011

 

  1. LoVecchio F, Klemens J, Welch S, Rodriguez R. Antibiotics after rattlesnake envenomation. J Emerg Med. 2002;23(4):327-328. doi: 10.1016/s0736-4679(02)00563-2

 

  1. Starr CK. A simple pain scale for field comparison of hymenopteran stings. J Entomol Sci. 1985;20(2):225-231. doi: 10.18474/0749-8004-20.2.225

 

  1. Wiener S. Snake bite in a subject actively immunized against snake venom. Med J Aust. 1961;48(1):658-659. doi: 10.5694/j.1326-5377.1961.tb69017.x

 

  1. Rosenfeld G. Symptomatology, pathology, and treatment of snake bites in South America. In: Bucherl W, Buckley EE, Deulofeu V, editors. Venomous Animals and their Venoms. Vol. 2. New York: Academic Press; 1971. p. 380.

 

  1. Abdel-Aal A, Abdel-Baset A. Venom yield and toxicities of six Egyptian snakes with a description of a procedure for estimating the amount of venom ejected by a single snake bite. Sci J King Faisal Univ (Basic Appl Sci). 2010;11(1):167-182.

 

  1. Mirtschin PJ, Dunstan N, Hough B, et al. Venom yields from Australian and some other species of snakes. Ecotoxicology. 2006;15(6):531-538. doi: 10.1007/s10646-006-0089-x

 

  1. Jesupret C, Baumann K, Jackson TN, et al. Vintage venoms: Proteomic and pharmacological stability of snake venoms stored for up to eight decades. J Proteomics. 2014;105:285-294. doi: 10.1016/j.jprot.2014.01.004

 

  1. Schöttler WH. On the stability of desiccated snake venoms. J Immunol. 1951;67(4):299. doi: 10.4049/jimmunol.67.4.299

 

  1. Munekiyo SM, Mackessy SP. Effects of temperature and storage conditions on the electrophoretic, toxic and enzymatic stability of venom components. Comp Biochem Physiol Part B Biochem Mol Biol. 1998;119(1):119-127. doi: 10.1016/s0305-0491(97)00294-0

 

  1. Perumal Samy R, Gopalakrishnakone P, Thwin MM, et al. Antibacterial activity of snake, scorpion and bee venoms: A comparison with purified venom phospholipase A2 enzymes. J Appl Microbiol. 2007;102(3):650-659. doi: 10.1111/j.1365-2672.2006.03161.x

 

  1. Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P. Effect of various growth media upon survival during storage of freeze-dried Enterococcus faecalis and Enterococcus durans. J Appl Microbiol. 2003;94(6):947-952. doi: 10.1046/j.1365-2672.2003.01853.x

 

  1. Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutierrez JM. Venoms, venomics, antivenomics. FEBS Lett. 2009;583(11):1736-1743. doi: 10.1016/j.febslet.2009.03.029

 

  1. Starkl P, Marichal T, Gaudenzio N, et al. IgE antibodies, FcεRIα, and IgE-mediated local anaphylaxis can limit snake venom toxicity. J Allergy Clin Immunol. 2016;137(1):246-257.e211. doi: 10.1016/j.jaci.2015.08.005

 

  1. Gitlin D. Some concepts of plasma protein metabolism, A.D. 1956. Pediatrics. 1957;19(4):657.

 

  1. Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC. Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc Natil Acad Sci United States Am. 2010;107(46):19985-19990. doi: 10.1073/pnas.1014074107

 

  1. McEwan WA, Tam JC, Watkinson RE, Bidgood SR, Mallery DL, James LC. Intracellular antibody-bound pathogens stimulate immune signaling via Fc-receptor TRIM21. Nat Immunol. 2013;14(4):327-336. doi: 10.1038/ni.2548

 

  1. Francischetti IM, My-Pham V, Harrison J, Garfield MK, Ribeiro JM. Bitis gabonica (Gaboon viper) snake venom gland: Toward a catalog for the full-length transcripts (cDNA) and proteins. Gene. 2004;337:55-69. doi: 10.1016/j.gene.2004.03.024

 

  1. Agarwal S, Cunningham-Rundles C. Assessment and clinical interpretation of reduced IgG values. Ann Allergy Asthma Immunol. 2007;99(3):281-283. doi: 10.1016/s1081-1206(10)60665-5

 

  1. Boyer L. Fraction of IgG in Horses Specific to one Venom’s Components. Personal Communication to Brian Hanley; 2015.

 

  1. Kagen S, Muthiah R. Poisonous snake venom vaccination: A case report of a non-physician directed experiment. Ann Allergy Asthma Immunol. 2004;92(1):120.

 

  1. Langley RL. A review of venomous animal bites and stings in pregnant patients. Wilderness Environ Med. 2004;15(3): 207-215. doi: 10.1580/1080-6032(2004)15[207:arovab]2.0.co;2

 

  1. Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M. IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol. 2012; 2012:985646. doi: 10.1155/2012/985646

 

  1. Dehghani R, Sharif MR, Moniri R, Sharif A, Kashani HH. The identification of bacterial flora in oral cavity of snakes. Comp Clin Pathol. 2016;25(2):279-283. doi: 10.1007/s00580-015-2178-9

 

  1. Goldstein EJ, Citron DM, Gonzalez H, Russell FE, Finegold SM. Bacteriology of rattlesnake venom and implications for therapy. J Infect Dis. 1979;140(5):818-821. doi: 10.1093/infdis/140.5.818

 

  1. Jho YS, Park DH, Lee JH, Cha SY, Han JS. Identification of bacteria from the oral cavity and cloaca of snakes imported from Vietnam. Lab Anim Res. 2011;27(3):213-217. doi: 10.5625/lar.2011.27.3.213

 

  1. Theakston RD, Phillips RE, Looareesuwan S, Echeverria P, Makin T, Warrell DA. Bacteriological studies of the venom and mouth cavities of wild Malayan pit vipers (Calloselasma rhodostoma) in southern Thailand. Trans R Soc Trop Med Hyg. 1990;84(6):875-879. doi: 10.1016/0035-9203(90)90112-r

 

  1. Sriprapat S, Aeksowan S, Sapsutthipas S, et al. The impact of a low dose, low volume, multi-site immunization on the production of therapeutic antivenoms in Thailand. Toxicon. 2003;41(1):57-64. doi: 10.1016/s0041-0101(02)00209-x

 

  1. Klinkenberg J. Florida’s Snake Man Made Living from Deadly Serpents. United States: Tampa Bay Times; 2011.
Conflict of interest
All authors declare no conflict of interest.
Share
Back to top
Journal of Biological Methods, Electronic ISSN: 2326-9901 Print ISSN: TBA, Published by POL Scientific