Lower urinary tract dysfunction following stroke: From molecular mechanisms to clinical anatomy
Bladder dysfunction is a common clinical problem in stroke patients and a strong prognostic factor of disability and exerts an enormous impact on health and economy. The aim of this narrative review was tο examine the pathophysiological mechanisms of lower urinary tract symptoms after stroke, as well as the relevant clinical anatomy. Normal micturition is achieved through complex coordination between brain regions, spinal cord, and peripheral nerves, and anatomic brain connectivity is crucial to lower urinary tract physiology. The most important neurotransmitters involved in bladder control include γ-aminobutyric acid, opioids, glutamate, dopamine, norepinephrine, acetylcholine, and nitric oxide. The precise correspondence between brain damage and relevant urinary symptoms is not well understood. Urodynamic changes after stroke include detrusor overactivity, dyssynergia, and uninhibited sphincter relaxation. Several brain regions could be implicated in post-stroke urinary dysfunction. Brainstem lesions can cause various urinary symptoms. A lesion superiorly to the pontine micturition center (PMC) results in an uninhibited bladder, whereas a lesion between the sacral spinal cord and PMC leads to either a spastic bladder or sphincter-detrusor dyssynergia. Supra-pontine lesions usually cause bladder storage dysfunction. Frontoparietal lesions have been associated with urinary incontinence and insular lesions with urinary retention. Understanding the mechanisms underlying the dysfunction of the lower urinary tract following stroke can aid in the development of new therapeutic strategies for these patients.
- Kim BR, Lee J, Sohn MK, et al. Risk factors and functional impact of medical complications in stroke. Ann Rehabil Med. 2017;41(5):753-760. doi: 10.5535/arm.2017.41.5.753
- Liang CC, Shaw SW, Huang YH, Lin YH, Lee TH. Bladder transplantation of amniotic fluid stem cell may ameliorate bladder dysfunction after focal cerebral ischemia in rat. Stem Cells Transl Med. 2017;6(4):1227-1236. doi: 10.1002/sctm.16-0212
- Tekeoğlu Y, Adak B, Göksoy T. Effect of transcutaneous electrical nerve stimulation (TENS) on barthel activities of daily living (ADL) index score following stroke. Clin Rehabil. 1998;12(4):277-280. doi: 10.1191/026921598672873816
- Kuptniratsaikul V, Kovindha A, Suethanapornkul S, Manimmanakorn N, Archongka Y. Complications during the rehabilitation period in Thai patients with stroke: A multicenter prospective study. Am J Phys Med Rehabil. 2009;88(2):92-99. doi: 10.1097/PHM.0b013e3181909d5f
- Lorish TR, Sandin KJ, Roth EJ, Noll SF. Stroke rehabilitation. 3. Rehabilitation evaluation and management. Arch Phys Med Rehabil. 1994;75:S47-S51.
- Olai L, Borgquist L, Svärdsudd K. Health problems in elderly patients during the first post-stroke year. Ups J Med Sci. 2012;117(3):318-327. doi: 10.3109/03009734.2012.674572
- Yoo KH, Lee SJ, Chang SG. Predictive value of the ischemic stroke lesion to detrusor function. Neurourol Urodyn. 2010;29(7):1355-1356. doi: 10.1002/nau.20885
- Salehi-Pourmehr H, Hajebrahimi S, Rahbarghazi R, et al. Stem cell therapy for neurogenic bladder dysfunction in rodent models: A systematic review. Int Neurourol J. 2020;24(3): 241-257. doi: 10.5213/inj.2040058.029
- Akkoç Y, Bardak AN, Ersöz M, et al. Post-stroke lower urinary system dysfunction and its relation with functional and mental status: A multicenter cross-sectional study. Top Stroke Rehabil. 2019;26:136-41. doi: 10.1080/10749357.2018.1555389
- Gelber DA, Good DC, Laven LJ, Verhulst SJ. Causes of urinary incontinence after acute hemispheric stroke. Stroke. 1993;24(3):378-382. doi: 10.1161/01.str.24.3.378
- Mehdi Z, Birns J, Bhalla A. Post-stroke urinary incontinence. Int J Clin Pract. 2013;67(11):1128-1137. doi: 10.1111/ijcp.12183
- Guo GY, Kang YG. Effectiveness of neuromuscular electrical stimulation therapy in patients with urinary incontinence after stroke: A randomized sham controlled trial. Medicine (Baltimore). 2018;97(52):e13702. doi: 10.1097/MD.0000000000013702
- Panfili Z, Metcalf M, Griebling TL. Contemporary evaluation and treatment of poststroke lower urinary tract dysfunction. Urol Clin North Am. 2017;44(3):403-414. doi: 10.1016/j.ucl.2017.04.007
- Sakakibara R. Lower urinary tract dysfunction in patients with brain lesions. Handb Clin Neurol. 2015;130:269-287. doi: 10.1016/B978-0-444-63247-0.00015-8
- Kohler M, Mayer H, Battocletti M, Kesselring J, Saxer S. Wirksamkeit von nichtmedikamentösen interventionen zur förderung der urinkontinenz bei menschen nach einem cerebro-vaskulären Insult-eine systematische Literaturübersicht [Effectiveness of non-pharmacological interventions to promote urinary continence in stroke survivors-a systematic literature review]. Pflege. 2016;29(5):235-245. [In German]. doi: 10.1024/1012-5302/a000493
- McKenzie P, Badlani GH. The incidence and etiology of overactive bladder in patients after cerebrovascular accident. Curr Urol Rep. 2012;13(5):402-406. doi: 10.1007/s11934-012-0269-6
- Miyazato M, Kadekawa K, Kitta T, et al. New frontiers of basic science research in neurogenic lower urinary tract dysfunction. Urol Clin North Am. 2017;44(3):491-505. doi: 10.1016/j.ucl.2017.04.014
- Satkunam LE. Rehabilitation medicine: 3. Management of adult spasticity. CMAJ. 2003;169(11):1173-1179.
- Amarenco G. Troubles vésico-sphinctériens d’origine nerveuse Vesico-sphincter disorders of nervous origin. Rev Prat. 1995;45(3):331-335. [In French].
- Chartier-Kastler E, Mozer P, Ayoub N, Richard F, Ruffion A. Hypertrophie bénigne de la prostate et neuro-urologie Benign prostatic hyperplasia and neurourology. Prog Urol. 2007;17(3):529-534. [In French]. doi: 10.1016/s1166-7087(07)92363-5
- Kasyan GR, Dreval RO, Krivoborodov GG, et al. Socio-economic aspects of neurogenic dysfunctions in urology. Urologiia. 2020;(5):127-132. [In Russian].
- Feder M, Heller L, Tadmor R, Snir D, Solzi P, Ring H. Urinary continence after stroke: Association with cystometric profile and computerised tomography findings. Eur Neurol. 1987;27(2):101-105. doi: 10.1159/000116140
- Wu MN, Guo YC, Lai CL, Shen JT, Liou LM. Poststroke detrusor hyporeflexia in a patient with left medial pontine infarction. Neurologist. 2012;18(2):73-75. doi: 10.1097/NRL.0b013e318247b9d9
- Khavari R, Boone TB. Functional brain imaging in voiding dysfunction. Curr Bladder Dysfunct Rep. 2019;14(1):24-30. doi: 10.1007/s11884-019-00503-0
- Zare A, Jahanshahi A, Rahnama’i MS, Schipper S, Van Koeveringe GA. The role of the periaqueductal gray matter in lower urinary tract function. Mol Neurobiol. 2019;56(2): 920-934. doi: 10.1007/s12035-018-1131-8
- Smith CE, Schneider MA. Assessing postvoid residual to identify risk for urinary complications post stroke. J Neurosci Nurs. 2020;52(5):219-223. doi: 10.1097/JNN.0000000000000536
- Tateno F, Sakakibara R, Aiba Y, et al. Bladder autonomic dysfunction after a parietal stroke. J Stroke Cerebrovasc Dis. 2020;29(4):104620. doi: 10.1016/j.jstrokecerebrovasdis.2019.104620
- Yum KS, Na SJ, Lee KY, et al. Pattern of voiding dysfunction after acute brainstem infarction. Eur Neurol. 2013;70(5-6): 291-296. doi: 10.1159/000352040
- Pettersen R, Stien R, Wyller TB. Post-stroke urinary incontinence with impaired awareness of the need to void: Clinical and urodynamic features. BJU Int. 2007;99(5): 1073-1077. doi: 10.1111/j.1464-410X.2007.06754.x
- Kreydin EI, Gad P, Gao B, Liu CY, Ginsberg DA, Jann K. The effect of stroke on micturition associated brain activity: A pilot fMRI study. Neurourol Urodyn. 2020;39(8):2198-2205. doi: 10.1002/nau.24473
- Sakakibara R. Editorial comment to effect of dominant hemispheric stroke on detrusor function in patients with lower urinary tract symptoms. Int J Urol. 2010;17(7):660. doi: 10.1111/j.1442-2042.2010.02549.x
- Lee HS, Choi JG, Shin JH. Urological disturbance and its neuroanatomical correlate in patients with chronic brainstem stroke. Neurourol Urodyn. 2017;36(1):136-141. doi: 10.1002/nau.22889
- Shukla R, Giri P, Bhandari A, Shankhwar SN. Pontine stroke and bladder dysfunction. BMJ Case Rep. 2014;2014:bcr2013200787. doi: 10.1136/bcr-2013-200787
- Yotsuyanagi S, Yokoyama O, Komatsu K, Kodama K, Niikura S, Namiki M. Expression of neural plasticity related gene in the pontine tegmental area of rats with overactive bladder after cerebral infarction. J Urol. 2001;166(3): 1148-1155.
- Kodama K, Yokoyama O, Komatsu K, Yotsuyanagi S, Niikura S, Namiki M. Contribution of cerebral nitric oxide to bladder overactivity after cerebral infarction in rats. J Urol. 2002;167(1):391-396.
- Yokoyama O, Ishiura Y, Komatsu K, et al. Effects of MK-801 on bladder overactivity in rats with cerebral infarction. J Urol. 1998;159(2):571-576. doi: 10.1016/s0022-5347(01)63986-7
- Yokoyama O, Komatsu K, Ishiura Y, Nakamura Y, Morikawa K, Namiki M. Change in bladder contractility associated with bladder overactivity in rats with cerebral infarction. J Urol. 1998;159(2):577-580. doi: 10.1016/s0022-5347(01)63987-9
- Yokoyama O, Yoshiyama M, Namiki M, De Groat WC. Glutamatergic and dopaminergic contributions to rat bladder hyperactivity after cerebral artery occlusion. Am J Physiol. 1999;276(4):R935-R942. doi: 10.1152/ajpregu.1999.276.4.R935
- Andersson KE, Pehrson R. CNS involvement in overactive bladder: Pathophysiology and opportunities for pharmacological intervention. Drugs. 2003;63(23):2595-2611. doi: 10.2165/00003495-200363230-00003
- Nagasaka Y, Yokoyama O, Komatsu K, Ishiura Y, Nakamura Y, Namiki M. Effects of opioid subtypes on detrusor overactivity in rats with cerebral infarction. Int J Urol. 2007;14(3):226-231, discussion 232. doi: 10.1111/j.1442-2042.2007.01700.x
- Kanie S, Yokoyama O, Komatsu K, et al. GABAergic contribution to rat bladder hyperactivity after middle cerebral artery occlusion. Am J Physiol Regul Integr Comp Physiol. 2000;279(4):R1230-R1238. doi: 10.1152/ajpregu.2000.279.4.R1230
- Yokoyama O, Yoshiyama M, Namiki M, De Groat WC. Changes in dopaminergic and glutamatergic excitatory mechanisms of micturition reflex after middle cerebral artery occlusion in conscious rats. Exp Neurol. 2002;173(1):129-135. doi: 10.1006/exnr.2001.7833
- Yokoyama O, Mizuno H, Komatsu K, Akino H, Tanase K, Namiki M. Role of glutamate receptors in the development and maintenance of bladder overactivity after cerebral infarction in the rat. J Urol. 2004;171(4):1709-1714. doi: 10.1097/01.ju.0000104861.73314.fe
- Yokoyama O, Yoshiyama M, Namiki M, De Groat WC. Role of the forebrain in bladder overactivity following cerebral infarction in the rat. Exp Neurol. 2000;163(2):469-476. doi: 10.1006/exnr.2000.7391
- Yokoyama O, Yoshiyama M, Namiki M, De Groat WC. Interaction between D2 dopaminergic and glutamatergic excitatory influences on lower urinary tract function in normal and cerebral-infarcted rats. Exp Neurol. 2001;169(1): 148-155. doi: 10.1006/exnr.2001.7639
- Liu HT, Liu AB, Chancellor MB, Kuo HC. Urinary nerve growth factor level is correlated with the severity of neurological impairment in patients with cerebrovascular accident. BJU Int. 2009;104(8):1158-1162. doi: 10.1111/j.1464-410X.2009.08533.x
- Yokokawa R, Akino H, Ito H, Zha X, Yokoyama O. Nerve growth factor release from the urothelium increases via activation of bladder C-fiber in rats with cerebral infarction. Neurourol Urodyn. 2017;36(6):1448-1455. doi: 10.1002/nau.23142
- Ishiura Y. Experimental study of voiding dysfunction induced by cerebral infarction in rats. Nihon Hinyokika Gakkai Zasshi. 1996;87(11):1221-1230. [In Japanese]. doi: 10.5980/jpnjurol1989.87.1221
- Obara K, Suzuki S, Shibata H, et al. Noradrenaline-induced relaxation of urinary bladder smooth muscle is primarily triggered through the β3-adrenoceptor in rats. Biol Pharm Bull. 2019;42(5):736-743. doi: 10.1248/bpb.b18-00903
- Andersson KE. Muscarinic acetylcholine receptors in the urinary tract. Handb Exp Pharmacol. 2011;202:319-344. doi: 10.1007/978-3-642-16499-6_16
- Jeanson G, Lebreton F. Corrélats neuroanatomiques entre lésions AVC et troubles urinaires: Une revue de la littérature [Neuroanatomical correlates between stroke lesions and urinary disorders: A narrative review]. Prog Urol. 2019;29(4):226-234. [In French]. doi: 10.1016/j.purol.2018.10.004
- Yokoyama O. Pharmacological and genetic analysis of mechanisms underlying detrusor overactivity in rats. Neurourol Urodyn. 2010;29(1):107-111. doi: 10.1002/nau.20746
- Andersson KE. Mechanisms of disease: Central nervous system involvement in overactive bladder syndrome. Nat Clin Pract Urol. 2004;1(2):103-108. doi: 10.1038/ncpuro0021
- Pikov V, McCreery DB. Spinal hyperexcitability and bladder hyperreflexia during reversible frontal cortical inactivation induced by low-frequency electrical stimulation in the cat. J Neurotrauma. 2009;26(1):109-119. doi: 10.1089/neu.2008.0584
- Kreydin E, Zhong H, Latack K, Ye S, Edgerton VR, Gad P. Transcutaneous electrical spinal cord neuromodulator (TESCoN) Improves symptoms of overactive bladder. Front Syst Neurosci. 2020;14:1. doi: 10.3389/fnsys.2020.00001
- Natsume O. Detrusor contractility and overactive bladder in patients with cerebrovascular accident. Int J Urol. 2008;15(6):505-510. doi: 10.1111/j.1442-2042.2008.02045.x
- Yared JE, Gormley EA. The role of urodynamics in elderly patients. Clin Geriatr Med. 2015;31(4):567-579. doi: 10.1016/j.cger.2015.06.003