Efficacy of pembrolizumab in urothelial cancer: A systematic review and meta-analysis
Background: Urothelial bladder cancer is a major health challenge owing to its high incidence, elevated mortality rates, and clinical diversity. Objective: This systematic review and meta-analysis assesses the efficacy of pembrolizumab in the treatment of non-muscle-invasive bladder cancer (NMIBC), muscle-invasive bladder cancer (MIBC), and metastatic urothelial carcinoma (mUC). After applying the inclusion and exclusion criteria, a literature search of PubMed, Scopus, and Web of Science (January 2020–June 2025) identified eight studies on NMIBC, MIBC, and mUC for the final analysis. Analysis revealed an advantage of pembrolizumab-based treatment (odds ratio [OR]: 1.86; 95% confidence interval [CI]: 1.70–2.03). Subgroup analyses showed the effectiveness in MIBC (OR: 1.88; 95% CI: 1.65–2.12) and mUC (OR: 1.94; 95% CI: 1.82–2.11). In contrast, the NMIBC subgroup lacked significance (OR: 1.28; 95% CI: 0.86–1.91), reflecting the evidence from small, early-phase studies. Pembrolizumab showed improved pathological complete response, progression-free survival, and disease-free survival in groups with elevated programmed death-ligand 1 expression and a high tumor mutational burden. Conclusion: Pembrolizumab is highly effective in treating MIBC and mUC; however, its impact on NMIBC remains uncertain. The limited number of studies and brief follow-up periods highlight the need for larger trials with long-term survival data.
- Claps F, Pavan N, Ongaro L, et al. BCG-unresponsive non-muscle-invasive bladder cancer: Current treatment landscape and novel emerging molecular targets. Int J Mol Sci. 2023;24(16):12596. doi: 10.3390/ijms241612596
- Woldu SL, Bagrodia A, Lotan Y. Guideline of guidelines: Non-muscle-invasive bladder cancer. BJU Int. 2017;119(3):371-380. doi: 10.1111/bju.13760
- Shalata AT, Shehata M, Van Bogaert E, et al. Predicting recurrence of non-muscle-invasive bladder cancer: Current techniques and future trends. Cancers (Basel). 2022;14(20):5019. doi: 10.3390/cancers14205019
- Smith AB, Deal AM, Woods ME, et al. Muscle-invasive bladder cancer: Evaluating treatment and survival in the National Cancer Data Base. BJU Int. 2014;114(5):719-726. doi: 10.1111/bju.12601
- Ledderose S, Rodler S, Eismann L, et al. P2X1 and P2X7 receptor overexpression is a negative predictor of survival in muscle-invasive bladder cancer. Cancers (Basel). 2023;15(8):2321. doi: 10.3390/cancers15082321
- Douglass L, Schoenberg M. The future of intravesical drug delivery for non-muscle invasive bladder cancer. Bladder Cancer. 2016;2(3):285-292. doi: 10.3233/BLC-160056
- Han Y, Liu D, Li L. PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 2020;10(3):727-742.
- Tang Q, Chen Y, Li X, et al. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol. 2022;13:964442. doi: 10.3389/fimmu.2022.964442
- Liu J, Chen Z, Li Y, Zhao W, Wu J, Zhang Z. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy. Front Pharmacol. 2021;12:731798. doi: 10.3389/fphar.2021.731798
- Wołącewicz M, Hrynkiewicz R, Grywalska E, et al. Immunotherapy in bladder cancer: Current methods and future perspectives. Cancers (Basel). 2020;12(5):1181. doi: 10.3390/cancers12051181
- Wang B, Pan W, Yang M, et al. Programmed death ligand-1 is associated with tumor infiltrating lymphocytes and poorer survival in urothelial cell carcinoma of the bladder. Cancer Sci. 2019;110(2):489-498. doi: 10.1111/cas.13887
- Zhang Z, Yu Y, Zhang Z, et al. Cancer-associated fibroblasts-derived CXCL12 enhances immune escape of bladder cancer through inhibiting P62-mediated autophagic degradation of PDL1. J Exp Clin Cancer Res. 2023;42(1):316. doi: 10.1186/s13046-023-02900-0
- Roviello G, Catalano M, Santi R, et al. Immune checkpoint inhibitors in urothelial bladder cancer: State of the art and future perspectives. Cancers (Basel). 2021;13(17):4411. doi: 10.3390/cancers13174411
- Galsky MD, Hoimes CJ, Necchi A, et al. Perioperative pembrolizumab therapy in muscle-invasive bladder cancer: Phase III KEYNOTE-866 and KEYNOTE-905/EV-303. Future Oncol. 2021;17(24):3137-3150. doi: 10.2217/fon-2021-0273
- Kong X, Zhang J, Chen S, et al. Immune checkpoint inhibitors: Breakthroughs in cancer treatment. Cancer Biol Med. 2024;21(6):451-472. doi: 10.20892/j.issn.2095-3941.2024.0055
- Karam EA, Céline YC, Prince G, et al. Optimizing enfortumab vedotin plus pembrolizumab therapy. Oncotarget. 2025;16:481-494. doi: 10.18632/oncotarget.28741
- Sun JY, Zhang D, Wu S, et al. Resistance to PD-1/PD-L1 blockade cancer immunotherapy: Mechanisms, predictive factors, and future perspectives. Biomark Res. 2020;8:35. doi: 10.1186/s40364-020-00212-5
- Nowicki TS, Hu-Lieskovan S, Ribas A. Mechanisms of resistance to PD-1 and PD-L1 blockade. Cancer J. 2018;24(1):47-53. doi: 10.1097/PPO.0000000000000303
- Gou Q, Dong C, Xu H, et al. PD-L1 degradation pathway and immunotherapy for cancer. Cell Death Dis. 2020;11(11):955. doi: 10.1038/s41419-020-03140-2
- Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71
- Basile G, Bandini M, Gibb EA, et al. Neoadjuvant pembrolizumab and radical cystectomy in patients with muscle-invasive urothelial bladder cancer: 3-year median follow-up update of PURE-01 trial. Clin Cancer Res. 2022;28(23):5107-5114. doi: 10.1158/1078-0432.CCR-22-2158
- Meghani K, Cooley LF, Choy B, et al. First-in-human intravesical delivery of pembrolizumab identifies immune activation in bladder cancer unresponsive to Bacillus Calmette- Guérin. Eur Urol. 2022;82(6):602-610. doi: 10.1016/j.eururo.2022.08.004
- Rose TL, Harrison MR, Deal AM, et al. Phase II study of gemcitabine and split-dose cisplatin plus pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive bladder cancer. J Clin Oncol. 2021;39(28):3140-3148. doi: 10.1200/JCO.21.01003
- Galsky MD, Mortazavi A, Milowsky MI, et al. Randomized double-blind phase II study of maintenance pembrolizumab versus placebo after first-line chemotherapy in patients with metastatic urothelial cancer. J Clin Oncol. 2020;38(16):1797-1806. doi: 10.1200/JCO.19.03091
- Apolo AB, Ballman KV, Sonpavde G, et al. Adjuvant pembrolizumab versus observation in muscle-invasive urothelial carcinoma. N Engl J Med. 2025;392(1):45-55. doi: 10.1056/NEJMoa2401726
- Briganti A, Gandaglia G, Scuderi S, et al. Surgical safety of radical cystectomy and pelvic lymph node dissection following neoadjuvant pembrolizumab in patients with bladder cancer: Prospective assessment of perioperative outcomes from the PURE-01 trial. Eur Urol. 2020;77(5):576-580. doi: 10.1016/j.eururo.2019.12.019
- Hoimes CJ, Flaig TW, Milowsky MI, et al. Enfortumab vedotin plus pembrolizumab in previously untreated advanced urothelial cancer. J Clin Oncol. 2023;41(1):22-31. doi: 10.1200/JCO.22.01643
- O’Donnell PH, Milowsky MI, Petrylak DP, et al. Enfortumab vedotin with or without pembrolizumab in cisplatin-ineligible patients with previously untreated locally advanced or metastatic urothelial cancer. J Clin Oncol. 2023;41(25):4107-4117. doi: 10.1200/JCO.22.02887
- Bellmunt J, de Wit R, Vaughn DJ, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015-1026. doi: 10.1056/NEJMoa1613683
- Ding S, Wu C, Cao J, Lyu J. Immune checkpoint inhibitor therapy as a neoadjuvant treatment for muscle-invasive bladder carcinoma: A narrative review. Curr Urol. 2025;19(1):39-42. doi: 10.1097/CU9.0000000000000263
- Powles T, Park SH, Voog E, et al. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med. 2020;383(13):1218-1230. doi: 10.1056/NEJMoa2002788
- Necchi A, Raggi D, Gallina A, et al. Updated results of PURE-01 with preliminary activity of neoadjuvant pembrolizumab in patients with muscle-invasive bladder carcinoma with variant histologies. Eur Urol. 2020;77(4):439-446. doi: 10.1016/j.eururo.2019.10.026
- Bajorin DF, Witjes JA, Gschwend JE, et al. Adjuvant nivolumab versus placebo in muscle-invasive urothelial carcinoma. N Engl J Med. 2021;384(22):2102-2114. doi: 10.1056/NEJMoa2034442
- Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909-1920. doi: 10.1016/S0140-6736(16)00561-4
- Balar AV, Kamat AM, Kulkarni GS, et al. Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): An open-label, single-arm, multicentre, phase 2 study. Lancet Oncol. 2021;22(7):919-930. doi: 10.1016/S1470-2045(21)00147-9
- Woodcock VK, Chen JL, Purshouse K, et al. PemBla: A Phase 1 study of intravesical pembrolizumab in recurrent non-muscle-invasive bladder cancer. BJUI Compass. 2023;4(3):322-330. doi: 10.1002/bco2.220
- Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(2):158-168. doi: 10.1056/NEJMra1703481
- Thommen DS, Schumacher TN. T cell dysfunction in cancer. Cancer Cell. 2018;33(4):547-562. doi: 10.1016/j.ccell.2018.03.012
- Mariathasan S, Turley SJ, Nickles D, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544-548. doi: 10.1038/nature25501
- Chen X, Song E. Turning foes to friends: targeting cancer- associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99-115. doi: 10.1038/s41573-018-0004-1
- Powles T, Csőszi T, Özgüroğlu M, et al. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): A randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22(7):931-945. doi: 10.1016/S1470-2045(21)00152-2
- Tang C, Ma J, Liu X, Liu Z. Identification of four immune subtypes in bladder cancer based on immune gene sets. Front Oncol. 2020;10:544610. doi: 10.3389/fonc.2020.544610
- Bibault JE, Giraud P, Burgun A. Big Data and machine learning in radiation oncology: State of the art and future prospects. Cancer Lett. 2016;382(1):110-117. doi: 10.1016/j.canlet.2016.05.033
