Advancements in genetic circuits as part of intelligent biotherapy for the treatment of bladder cancer: A review

Background: Bladder cancer poses a significant threat to human health. In recent years, genetic circuit therapy has emerged as a novel alternative for precision tumor treatment, demonstrating promising potential for clinical application. Compared to traditional drugs, genetic circuits – typically carried by plasmids – offer advantages such as modularity, druggability, and shorter drug development cycles. These circuits can identify multiple molecular signals from tumors and integrate them through logic gates to specifically target tumor cells. Furthermore, by assembling effector modules, they can induce specific forms of cell death in tumor cells or alter malignant phenotypes, thereby reshaping the immune microenvironment to produce efficient, durable, and controllable antitumor effects. The urinary system serves as an ideal model for this new therapy due to its accessibility from the outside. Several genetic circuits have already been validated for the treatment of bladder cancer. This review outlined the effectiveness and potential value of genetic circuits in bladder cancer therapy. Objective: This review focused on the design principles of genetic circuits, their ability to recognize and convert signals, their therapeutic signal output, and the associated delivery vehicles. We also discussed the challenges and future prospects of genetic circuits as a novel form of “intelligent biotherapy.” Conclusion: The gene circuit can identify multiple signals, processing complex information, and generating multiple effects, thus providing a new approach for personalized treatment of tumors.
- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71(3):209-249. doi: 10.3322/caac.21660
- Fiorentino V, Pizzimenti C, Franchina M, et al. Bladder epicheck test: A novel tool to support urothelial carcinoma diagnosis in urine samples. Int J Mol Sci. 2023;24(15):12489. doi: 10.3390/ijms241512489
- Pepe L, Fiorentino V, Pizzimenti C, et al. The simultaneous use of bladder epicheck® and urinary cytology can improve the sensitivity and specificity of diagnostic follow-up of urothelial lesions: Up-to-date data from a multi-institutional cohort. Diseases. 2024;12(9):219. doi: 10.3390/diseases12090219
- Chen X, Zhang J, Ruan W, et al. Urine DNA methylation assay enables early detection and recurrence monitoring for bladder cancer. J Clin Investig. 2020;130(12):6278-6289. doi: 10.1172/JCI139597
- Ruan W, Chen X, Huang M, et al. A urine-based DNA methylation assay to facilitate early detection and risk stratification of bladder cancer. Clin Epigenetics. 2021;13(1):91. doi: 10.1186/s13148-021-01073-x
- Flaig TW, Spiess PE, Agarwal N, et al. Bladder cancer, version 3.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2020;18(3):329-354. doi: 10.6004/jnccn.2020.0011
- Babjuk M, Burger M, Capoun O, et al. European association of urology guidelines on non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in Situ). European Urol. 2022;81(1):75-94. doi: 10.1016/j.eururo.2021.08.010
- Xie R, Cheng L, Huang M, et al. NAT10 drives cisplatin chemoresistance by enhancing ac4c-associated DNA repair in bladder cancer. Cancer Res. 2023;83(10):1666-1683. doi: 10.1158/0008-5472.CAN-22-2233
- Wu S, Xiong S, Li J, et al. A narrative review of advances in the management of urothelial cancer: Diagnostics and treatments. Bladder (San Franc). 2024;11(1):e21200003. doi: 10.14440/bladder.2024.0003
- Liu Q, You B, Meng J, et al. Targeting the androgen receptor to enhance NK cell killing efficacy in bladder cancer by modulating ADAR2/circ_0001005/PD-L1 signaling. Cancer Gene Ther. 2022;29(12):1988-2000. doi: 10.1038/s41417-022-00506-w
- Kim JM, Chen DS. Immune escape to PD-L1/PD-1 blockade: Seven steps to success (or failure). Ann Oncol. 2016;27(8):1492-504. doi: 10.1093/annonc/mdw217
- Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: Strategies for competitive advancement. Drug Resist Updat. 2024;75:101086. doi: 10.1016/j.drup.2024.101086
- Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature. 2000;403(6767):339-342. doi: 10.1038/35002131
- Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature. 2000;403(6767):335-338. doi: 10.1038/35002125
- Grunberg TW, Del Vecchio D. Modular analysis and design of biological circuits. Curr Opin Biotechnol. 2020;63:41-47. doi: 10.1016/j.copbio.2019.11.015
- Kitada T, DiAndreth B, Teague B, Weiss R. Programming gene and engineered-cell therapies with synthetic biology. Science. 2018;359(6376):eaad1067. doi: 10.1126/science.aad1067
- Zhan H, Xie H, Zhou Q, Liu Y, Huang W. Synthesizing a genetic sensor based on CRISPR-Cas9 for specifically killing p53- deficient cancer cells. ACS Synth Biol. 2018;7(7):1798-1807. doi: 10.1021/acssynbio.8b00202
- Liu L, Liu Y, Zhang T, et al. Synthetic bax-anti Bcl2 combination module actuated by super artificial hTERT promoter selectively inhibits malignant phenotypes of bladder cancer. J Exp Clin Cancer Rese CR. 2016;35:3. doi: 10.1186/s13046-015-0279-6
- Zhang J, Ramesh N, Chen Y, et al. Identification of human uroplakin II promoter and its use in the construction of CG8840, a urothelium-specific adenovirus variant that eliminates established bladder tumors in combination with docetaxel. Cancer Res. 2002;62(13):3743-3750.
- Zhan H, Zhou Q, Gao Q, Li J, Huang W, Liu Y. Multiplexed promoterless gene expression with CRISPReader. Genome Biol. 2019;20(1):113. doi: 10.1186/s13059-019-1712-5
- Liu Y, Huang W, Cai Z. Synthesizing AND gate minigene circuits based on CRISPReader for identification of bladder cancer cells. Nature Commun. 2020;11(1):5486. doi: 10.1038/s41467-020-19314-7
- Zhang Q, Liu S, Wang H, et al. ETV4 mediated tumor-associated neutrophil infiltration facilitates lymphangiogenesis and lymphatic metastasis of bladder cancer. Adv Sci (Weinh). 2023;10(11):e2205613. doi: 10.1002/advs.202205613
- Huang M, Dong W, Xie R, et al. HSF1 facilitates the multistep process of lymphatic metastasis in bladder cancer via a novel PRMT5-WDR5-dependent transcriptional program. Cancer Commun (Lond). 2022;42(5):447-470. doi: 10.1002/cac2.12284
- Wang C, Liu Q, Huang M, et al. Loss of GATA6 expression promotes lymphatic metastasis in bladder cancer. FASEB J. 2020;34(4):5754-5766. doi: 10.1096/fj.201903176R
- Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597-610. doi: 10.1038/nrg2843
- Xie Z, Wroblewska L, Prochazka L, Weiss R, Benenson Y. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science. 2011;333(6047):1307-1311. doi: 10.1126/science.1205527
- Hirosawa M, Fujita Y, Parr CJ, et al. Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch. Nucleic Acids Res. 2017;45(13):e118. doi: 10.1093/nar/gkx309
- Shi Q, Xue C, Zeng Y, et al. Notch signaling pathway in cancer: From mechanistic insights to targeted therapies. Signal Transduct Target Ther. 2024;9(1):128. doi: 10.1038/s41392-024-01828-x
- Choe JH, Watchmaker PB, Simic MS, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med. 2021;13(591):eabe7378. doi: 10.1126/scitranslmed.abe7378
- Liu Y, Zeng Y, Liu L, et al. Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells. Nat Commun. 2014;5:5393. doi: 10.1038/ncomms6393
- Wang Y, Zhang G, Meng Q, et al. Precise tumor immune rewiring via synthetic CRISPRa circuits gated by concurrent gain/loss of transcription factors. Nature Commun. 2022;13(1):1454. doi: 10.1038/s41467-022-29120-y
- Kempton HR, Goudy LE, Love KS, Qi LS. Multiple input sensing and signal integration using a split Cas12a system. Mol Cell. 2020;78(1):184-191.e3. doi: 10.1016/j.molcel.2020.01.016
- Shao J, Qiu X, Zhang L, et al. Multi-layered computational gene networks by engineered tristate logics. Cell. 2024;187(18):5064-5080.e14. doi: 10.1016/j.cell.2024.07.001
- Shao J, Li S, Qiu X, et al. Engineered poly(A)-surrogates for translational regulation and therapeutic biocomputation in mammalian cells. Cell Res. 2024;34(1):31-46. doi: 10.1038/s41422-023-00896-y
- Dong K, Zhang W, Hu H, et al. A sensitive and specific nano-vehicle based on self-amplified dual-input synthetic gene circuit for intracellular imaging and treatment. Biosens Bioelectron. 2022;218:114746. doi: 10.1016/j.bios.2022.114746
- Yin P, Ge M, Xie S, Zhang L, Kuang S, Nie Z. A universal orthogonal imaging platform for living-cell RNA detection using fluorogenic RNA aptamers. Chem Sci. 2023;14(48):14131-14139. doi: 10.1039/d3sc04957d
- Hao Y, Li J, Li Q, et al. Programmable live-cell CRISPR imaging with toehold-switch-mediated strand displacement. Angew Chem Int Engl. 2020;59(46):20612-20618. doi: 10.1002/anie.202009062
- Nimjee SM, White RR, Becker RC, Sullenger BA. Aptamers as therapeutics. Annu Rev Pharmacol Toxicol. 2017;57:61-79. doi: 10.1146/annurev-pharmtox-010716-104558
- Zheng B, Niu L, Xu H, et al. Engineering redirected NF-kappaB/OIP5 expression programs to enhance tumor responses to chemotherapy in bladder cancer. Sci Bull (Beijing). 2023;68(24):3207-3224. doi: 10.1016/j.scib.2023.11.027
- Wang Y, Zhang Y, Li PC, et al. Development of novel aptamer-based targeted chemotherapy for bladder cancer. Cancer Res. 2022;82(6):1128-1139. doi: 10.1158/0008-5472.CAN-21-2691
- Quin J, Sedmik J, Vukic D, Khan A, Keegan LP, O’Connell MA. ADAR RNA modifications, the epitranscriptome and innate immunity. Trends Biochem Sci. Sep 2021;46(9):758-771. doi: 10.1016/j.tibs.2021.02.002
- Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol. 2016;17(2):83-96. doi: 10.1038/nrm.2015.4
- Walkley CR, Li JB. Rewriting the transcriptome: Adenosine-to-inosine RNA editing by ADARs. Genome Biol. 2017;18(1):205. doi: 10.1186/s13059-017-1347-3
- Qian Y, Li J, Zhao S, et al. Programmable RNA sensing for cell monitoring and manipulation. Nature. 2022;610(7933):713-721. doi: 10.1038/s41586-022-05280-1
- Jiang K, Koob J, Chen XD, et al. Programmable eukaryotic protein synthesis with RNA sensors by harnessing ADAR. Nature Biotechnol. 2023;41(5):698-707. doi: 10.1038/s41587-022-01534-5
- Dominguez AA, Lim WA, Qi LS. Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol. 2016;17(1):5-15. doi: 10.1038/nrm.2015.2
- Cao C, Yao L, Li A, et al. A CRISPR/dCasX-mediated transcriptional programming system for inhibiting the progression of bladder cancer cells by repressing c-MYC or activating TP53. Clin Transl Med. 2021;11(9):e537. doi: 10.1002/ctm2.537
- Li J, Huang C, Xiong T, et al. A CRISPR interference of cbp and p300 selectively induced synthetic lethality in bladder cancer cells in vitro. Int J Biol Sci. 2019;15(6):1276-1286. doi: 10.7150/ijbs.32332
- Su G, Yao L, Han X, et al. A synthetic targeted RNA demethylation system based on CRISPR-Cas13b inhibits bladder cancer progression. Clin Transl Med. 2022;12(2):e734. doi: 10.1002/ctm2.734
- Zhan Y, Liu Y, Lin J, et al. Synthetic Tet-inducible artificial microRNAs targeting beta-catenin or HIF-1alpha inhibit malignant phenotypes of bladder cancer cells T24 and 5637. Sci Rep. 2015;5:16177. doi: 10.1038/srep16177
- Li J, Zhuang C, Liu Y, et al. shRNA targeting long non-coding RNA CCAT2 controlled by tetracycline-inducible system inhibits progression of bladder cancer cells. Oncotarget. 2016;7(20):28989-97. doi: 10.18632/oncotarget.8259
- Lin J, Liu Y, Zhan Y, et al. Synthetic tet-inducible small hairpin RNAs targeting hTERT or Bcl-2 inhibit malignant phenotypes of bladder cancer T24 and 5637 cells. Tumour Biol. 2016;37(3):3115-3121. doi: 10.1007/s13277-015-4122-7
- Chen M, Zhuang C, Liu Y, et al. Tetracycline-inducible shRNA targeting antisense long non-coding RNA HIF1A-AS2 represses the malignant phenotypes of bladder cancer. Cancer Lett. 2016;376(1):155-164. doi: 10.1016/j.canlet.2016.03.037
- Peng L, Pan P, Chen J, Yu X, Wu J, Chen Y. A tetracycline-inducible CRISPR/Cas9 system, targeting two long non-coding RNAs, suppresses the malignant behavior of bladder cancer cells. Oncol Lett. 2018;16(4):4309-4316. doi: 10.3892/ol.2018.9157
- Yin J, Yang L, Mou L, et al. A green tea-triggered genetic control system for treating diabetes in mice and monkeys. SciTransl Med. 2019;11(515):eaav8826. doi: 10.1126/scitranslmed.aav8826
- Wang Y, Liao S, Guan N, et al. A versatile genetic control system in mammalian cells and mice responsive to clinically licensed sodium ferulate. Sci Adv. 2020;6(32):eabb9484. doi: 10.1126/sciadv.abb9484
- Glantz ST, Berlew EE, Jaber Z, Schuster BS, Gardner KH, Chow BY. Directly light-regulated binding of RGS-LOV photoreceptors to anionic membrane phospholipids. Proc Natl Acad Sci U S A. 2018;115(33):E7720-E7727. doi: 10.1073/pnas.1802832115
- Endo M, Iwawaki T, Yoshimura H, Ozawa T. Photocleavable cadherin inhibits cell-to-cell mechanotransduction by light. ACS Chem Biol. 2019;14(10):2206-2214. doi: 10.1021/acschembio.9b00460
- Rizzini L, Favory JJ, Cloix C, et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science. 2011;332(6025):103-106. doi: 10.1126/science.1200660
- Deng C, Li S, Liu Y, et al. Split-Cas9-based targeted gene editing and nanobody-mediated proteolysis-targeting chimeras optogenetically coordinated regulation of Survivin to control the fate of cancer cells. Clin Transl Med. 2023;13(8):e1382. doi: 10.1002/ctm2.1382
- Lin F, Dong L, Wang W, Liu Y, Huang W, Cai Z. An efficient light-inducible P53 expression system for inhibiting proliferation of bladder cancer cell. Int J Biol Sci. 2016;12(10):1273-1278. doi: 10.7150/ijbs.16162
- Qi F, Tan B, Ma F, et al. A synthetic light-switchable system based on crispr cas13a regulates the expression of LncRNA MALAT1 and affects the malignant phenotype of bladder cancer cells. Int J Biol Sci. 2019;15(8):1630-1636. doi: 10.7150/ijbs.33772
- Duque M, Lee-Kubli CA, Tufail Y, et al. Sonogenetic control of mammalian cells using exogenous transient receptor potential A1 channels. Nat Commun. 2022;13(1):600. doi: 10.1038/s41467-022-28205-y
- Wu X, Yu Y, Wang M, et al. AAV-delivered muscone-induced transgene system for treating chronic diseases in mice via inhalation. Nat Commun. 2024;15(1):1122. doi: 10.1038/s41467-024-45383-z
- Nihongaki Y, Kawano F, Nakajima T, Sato M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol. 2015;33(7):755-760. doi: 10.1038/nbt.3245
- Yang Y, Mei H, Han X, et al. Synthetic CRISPR/dCas9-KRAB system driven by specific PSA promoter suppresses malignant biological behavior of prostate cancer cells through negative feedback inhibition of PSA expression. Cell Mol Biol Lett. 2023;28(1):96. doi: 10.1186/s11658-023-00508-y
- Xia S, Lu AC, Tobin V, et al. Synthetic protein circuits for programmable control of mammalian cell death. Cell. 2024;187(11):2785-2800.e16. doi: 10.1016/j.cell.2024.03.031
- Allen GM, Frankel NW, Reddy NR, et al. Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science. 2022;378(6625):eaba1624. doi: 10.1126/science.aba1624
- Nissim L, Wu MR, Pery E, et al. Synthetic RNA-based immunomodulatory gene circuits for cancer immunotherapy. Cell. 2017;171(5):1138-1150.e15. doi: 10.1016/j.cell.2017.09.049
- Raguram A, Banskota S, Liu DR. Therapeutic in vivo delivery of gene editing agents. Cell. 2022;185(15):2806-2827. doi: 10.1016/j.cell.2022.03.045
- Boorjian SA, Alemozaffar M, Konety BR, et al. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: A single-arm, open-label, repeat-dose clinical trial. Lancet Oncol. 2021;22(1):107-117. doi: 10.1016/S1470-2045(20)30540-4
- Lenis TL, Sarfare S, Jiang Z, Lloyd MB, Bok D, Radu RA. Complement modulation in the retinal pigment epithelium rescues photoreceptor degeneration in a mouse model of Stargardt disease. Proc Natl Acad Sci U S A. 2017;114(15):3987-3992. doi: 10.1073/pnas.1620299114
- Grimm D, Buning H. Small but increasingly mighty: Latest advances in AAV vector research, design, and evolution. Hum Gene Ther. 2017;28(11):1075-1086. doi: 10.1089/hum.2017.172
- Yoon AR, Jung BK, Choi E, et al. CRISPR-Cas12a with an oAd Induces Precise and cancer-specific genomic reprogramming of EGFR and efficient tumor regression. Mol Ther. 2020;28(10):2286-2296. doi: 10.1016/j.ymthe.2020.07.003
- Fan J, Liu Y, Liu L, Huang Y, Li X, Huang W. A multifunction lipid-based CRISPR-Cas13a genetic circuit delivery system for bladder cancer gene therapy. ACS Synt Biol. 2020;9(2):343-355. doi: 10.1021/acssynbio.9b00349
- Xue L, Zhao G, Gong N, et al. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery. Nat Nanotechnol. 2024;20:132-143. doi: 10.1038/s41565-024-01747-6
- Zhuang C, Zhuang C, Zhou Q, et al. Engineered CRISPR/ Cas13d sensing hTERT selectively inhibits the progression of bladder cancer in vitro. Front Mol Biosci. 2021;8:646412. doi: 10.3389/fmolb.2021.646412
- Liu Y, Li J, Chen Z, Huang W, Cai Z. Synthesizing artificial devices that redirect cellular information at will. eLife. 2018;7:e31936. doi: 10.7554/eLife.31936