POL Scientific / Bladder / Volume 12 / Issue 1 / DOI: 10.14440/bladder.2024.0062
Cite this article
11
Download
37
Citations
228
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

The role and clinical potential of RNA modifications in bladder cancer

Yuqing Wu1† Fenghao Zhang1† Yufan Ying1 Jiangfeng Li1 Xiangyi Zheng1* Liping Xie1,2*
Show Less
1 Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
2 Ningbo Institute of Urology, Ningbo, Zhejiang 315000, China
Bladder 2025 , 12(1), e21200037; https://doi.org/10.14440/bladder.2024.0062
Submitted: 14 November 2024 | Revised: 24 December 2024 | Accepted: 11 February 2025 | Published: 6 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Background: Bladder cancer (BC) represents a common malignancy and is characterized by high heterogeneity and complex biological behaviors, which pose substantial challenges to its effective treatment. Mounting evidence highlights the pivotal roles of ribonucleic acid (RNA) modifications, particularly N6-methyladenosine, alongside others such as 1-methyladenosine, 5-methylcytosine, N4-acetylcytidine, and 7-methylguanosine, in the regulation of the proliferation, migration, drug resistance, and immune evasion of BC cells. Objective: This article comprehensively reviewed the regulatory mechanisms and biological impacts of these RNA modifications in BC, with a focus on the interplay between RNA modifications and immune evasion, as well as their emerging roles in precision medicine. By looking into these underexplored areas, this work provided novel insights into RNA modifications as diagnostic markers, prognostic indicators, and therapeutic targets, paving the way for advancements in BC precision medicine. Conclusion: RNA modifications impact key processes such as proliferation, migration, drug resistance, and immune evasion of BC cells. Targeting RNA modification pathways offers promising strategies for enhancing the efficacy of current treatments for and overcoming drug resistance of BC.

Keywords
RNA modifications
m6A methylation
Bladder cancer
Drug resistance
Prognosis
Funding
This work was supported by grants from the National Natural Science Foundation of China (grant number: 81972374) and the Zhejiang Province Medical and Health Scientific Research Project (grant number: 2023RC154).
References
  1. Zi H, He SH, Leng XY, et al. Global, regional, and national burden of kidney, bladder, and prostate cancers and their attributable risk factors, 1990-2019. Mil Med Res. 2021;8(1):60. doi: 10.1186/s40779-021-00354-z

 

  1. Babjuk M, Burger M, Capoun O, et al. European association of urology guidelines on non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in situ). Eur Urol. 2022;81(1):75-94. doi: 10.1016/j.eururo.2021.08.010

 

  1. Alfred Witjes J, Max Bruins H, Carrión A, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: Summary of the 2023 guidelines. Eur Urol. 2024;85(1):17-31. doi: 10.1016/j.eururo.2023.08.016

 

  1. Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N6- methyladenosine modification in cancers: Current status and perspectives. Cell Res. 2018;28(5):507-517. doi: 10.1038/s41422-018-0034-6

 

  1. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169(7):1187-1200. doi: 10.1016/j.cell.2017.05.045

 

  1. Luo Q, Huang C, Chen M. Comprehensive analysis of N1- methylandenosine regulators and m1A-related mRNAs and lncRNAs as prognostic factors in bladder cancer. Gene. 2023;887:147735. doi: 10.1016/j.gene.2023.147735

 

  1. Chen X, Li A, Sun BF, et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol. 2019;21(8):978-990. doi: 10.1038/s41556-019-0361-y

 

  1. Li TF, Xu Z, Zhang K, et al. Effects and mechanisms of N6-methyladenosine RNA methylation in environmental pollutant-induced carcinogenesis. Ecotoxicol Environ Saf. 2024;277:116372. doi: 10.1016/j.ecoenv.2024.116372

 

  1. Han D, Liu J, Chen C, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270-274. doi: 10.1038/s41586-019-0916-x

 

  1. Russo F, Esposito S, Tripodi L, et al. Insights into Porphyromonas somerae in bladder cancer patients: Urinary detection by ddPCR. Microorganisms. 2024;12:2049. doi: 10.3390/microorganisms12102049

 

  1. Ditonno F, Franco A, Manfredi C, et al. The role of miRNA in testicular cancer: Current insights and future perspectives. Medicina (Kaunas). 2023;59(11):2033. doi: 10.3390/medicina59112033

 

  1. Wang K, Wang G, Li G, et al. m6A writer WTAP targets NRF2 to accelerate bladder cancer malignancy via m6A-dependent ferroptosis regulation. Apoptosis Int J Program Cell Death. 2023;28(3-4):627-638. doi: 10.1007/s10495-023-01817-5

 

  1. Yan R, Dai W, Wu R, Huang H, Shu M. Therapeutic targeting m6A-guided miR-146a-5p signaling contributes to the melittin-induced selective suppression of bladder cancer. Cancer Lett. 2022;534:215615. doi: 10.1016/j.canlet.2022.215615

 

  1. Zhang L, Li Y, Zhou L, et al. The m6A reader YTHDF2 promotes bladder cancer progression by suppressing RIG-I-mediated immune response. Cancer Res. 2023;83(11):1834-1850. doi: 10.1158/0008-5472.CAN-22-2485

 

  1. Mao X, Chen X, Xu Z, et al. The identification of a N(6)- methyladenosin-modifed immune pattern to predict immunotherapy response and survival in urothelial carcinoma. Aging (Albany NY). 2024;16(9):7774-7798. doi: 10.18632/aging.205782

 

  1. Huang J, Zhou W, Hao C, He Q, Tu X. The feedback loop of METTL14 and USP38 regulates cell migration, invasion and EMT as well as metastasis in bladder cancer. PLoS Genet. 2022;18(10):e1010366. doi: 10.1371/journal.pgen.1010366

 

  1. Yu H, Zhuang J, Zhou Z, et al. METTL16 suppressed the proliferation and cisplatin-chemoresistance of bladder cancer by degrading PMEPA1 mRNA in a m6A manner through autophagy pathway. Int J Biol Sci. 2024;20(4):1471-1491. doi: 10.7150/ijbs.86719

 

  1. Cheng M, Sheng L, Gao Q, et al. The m6 A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/ MYC signaling network. Oncogene. 2019;38(19):3667-3680. doi: 10.1038/s41388-019-0683-z

 

  1. Han J, Wang JZ, Yang X, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019;18(1):110. doi: 10.1186/s12943-019-1036-9

 

  1. Wei W, Sun J, Zhang H, et al. Circ0008399 interaction with WTAP promotes assembly and activity of the m6A methyltransferase complex and promotes cisplatin resistance in bladder cancer. Cancer Res. 2021;81(24):6142-6156. doi: 10.1158/0008-5472.CAN-21-1518

 

  1. Wang J, Luo J, Wu X, Li Z. WTAP enhances the instability of SYTL1 mRNA caused by YTHDF2 in bladder cancer. Histol Histopathol. 2024;39(5):633-646. doi: 10.14670/HH-18-671

 

  1. Yi W, Yu Y, Li Y, Yang J, Gao S, Xu L. The tumor-suppressive effects of alpha-ketoglutarate-dependent dioxygenase FTO via N6-methyladenosine RNA methylation on bladder cancer patients. Bioengineered. 2021;12(1):5323-5333. doi: 10.1080/21655979.2021.1964893

 

  1. Ying X, Huang Y, Liu B, et al. Targeted m6 A demethylation of ITGA6 mRNA by a multisite dCasRx-m6 A editor inhibits bladder cancer development. J Adv Res. 2024;56:57-68. doi: 10.1016/j.jare.2023.03.010

 

  1. Zhu J, Tong H, Sun Y, Li T, Yang G, He W. YTHDF1 Promotes bladder cancer cell proliferation via the METTL3/YTHDF1- RPN2-PI3K/AKT/mTOR Axis. Int J Mol Sci. 2023;24(8):6905. doi: 10.3390/ijms24086905

 

  1. Zhao J, Huang S, Tan D, et al. PGM1 and ENO1 promote the malignant progression of bladder cancer via comprehensive analysis of the m6A signature and tumor immune infiltration. J Oncol. 2022;2022:8581805. doi: 10.1155/2022/8581805

 

  1. Yan B, Li X, Peng M, et al. The YTHDC1/GLUT3/RNF183 axis forms a positive feedback loop that modulates glucose metabolism and bladder cancer progression. Exp Mol Med. 2023;55(6):1145-1158. doi: 10.1038/s12276-023-00997-z

 

  1. Zhao L, Han D, Zhu J, et al. The RNA m6A-binding protein YTHDC1 Is downregulated and associated with M2 macrophage infiltration in muscle-invasive bladder cancer. Clin Med Insights Oncol. 2023;17:11795549231203150. doi: 10.1177/11795549231203150

 

  1. Wang Y, Song W, Feng C, et al. Multi-omics analysis unveils the predictive value of IGF2BP3/SPHK1 signaling in cancer stem cells for prognosis and immunotherapeutic response in muscle-invasive bladder cancer. J Transl Med. 2024;22(1):900. doi: 10.1186/s12967-024-05685-8

 

  1. Xie F, Huang C, Liu F, et al. CircPTPRA blocks the recognition of RNA N6-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression. Mol Cancer. 2021;20(1):68. doi: 10.1186/s12943-021-01359-x

 

  1. Kong J, Lu S, Zhang L, et al. m6A methylation regulators as predictors for treatment of advanced urothelial carcinoma with anti-PDL1 agent. Front Immunol. 2022;13:1014861. doi: 10.3389/fimmu.2022.1014861

 

  1. Yang F, Jin H, Que B, et al. Dynamic m6 A mRNA methylation reveals the role of METTL3-m(6)A-CDCP1 signaling axis in chemical carcinogenesis. Oncogene. 2019;38(24):4755-4772. doi: 10.1038/s41388-019-0755-0

 

  1. Liu P, Fan B, Othmane B, et al. m6 A-induced lncDBET promotes the malignant progression of bladder cancer through FABP5-mediated lipid metabolism. Theranostics. 2022;12(14):6291-6307. doi: 10.7150/thno.71456

 

  1. Zhu H, Jia X, Wang Y, et al. M6A classification combined with tumor microenvironment immune characteristics analysis of bladder cancer. Front Oncol. 2021;11:714267. doi: 10.3389/fonc.2021.714267

 

  1. Fu D, Shi X, Yi X, et al. m6A reader IGF2BP2 promotes M2 macrophage polarization and malignant biological behavior of bladder cancer by stabilizing NRP1 mRNA expression. BMC Urol. 2024;24(1):147. doi: 10.1186/s12894-024-01534-4

 

  1. Lv L, Wei Q, Zhang J, et al. IGF2BP3 prevent HMGB1 mRNA decay in bladder cancer and development. Cell Mol Biol Lett. 2024;29(1):39. doi: 10.1186/s11658-024-00545-1

 

  1. Xie H, Li J, Ying Y, et al. METTL3/YTHDF2 m6 A axis promotes tumorigenesis by degrading SETD7 and KLF4 mRNAs in bladder cancer. J Cell Mol Med. 2020;24(7):4092-4104. doi: 10.1111/jcmm.15063

 

  1. Gu C, Wang Z, Zhou N, et al. Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N6- methyladenosine of Notch1. Mol Cancer. 2019;18(1):168. doi: 10.1186/s12943-019-1084-1

 

  1. Sun J, Ma X, Ying Y, et al. SMAD3 and FTO are involved in miR-5581-3p-mediated inhibition of cell migration and proliferation in bladder cancer. Cell Death Discov. 2022;8(1):199. doi: 10.1038/s41420-022-01010-8

 

  1. Sun Z, Sun X, Qin G, Li Y, Zhou G, Jiang X. FTO promotes proliferation and migration of bladder cancer via enhancing stability of STAT3 mRNA in an m6A-dependent manner. Epigenetics. 2023;18(1):2242688. doi: 10.1080/15592294.2023.2242688

 

  1. Jin H, Ying X, Que B, et al. N6-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. EBioMedicine. 2019;47:195-207. doi: 10.1016/j.ebiom.2019.07.068

 

  1. Le M, Qing M, Zeng X, Cheng S. m6A-YTHDF1 mediated regulation of GRIN2D in bladder cancer progression and aerobic glycolysis. Biochem Genet. 2024. doi: 10.1007/s10528-024-10875-6

 

  1. Chen JX, Chen DM, Wang D, Xiao Y, Zhu S, Xu XL. METTL3/ YTHDF2 m6A axis promotes the malignant progression of bladder cancer by epigenetically suppressing RRAS. Oncol Rep. 2023;49(5):94. doi: 10.3892/or.2023.8531

 

  1. Su Y, Wang B, Huang J, Huang M, Lin T. YTHDC1 positively regulates PTEN expression and plays a critical role in cisplatin resistance of bladder cancer. Cell Prolif. 2023;56(7):e13404. doi: 10.1111/cpr.13404

 

  1. Wyatt GR. Occurrence of 5-methylcytosine in nucleic acids. Nature. 1950;166(4214):237-238. doi: 10.1038/166237b0

 

  1. Squires JE, Patel HR, Nousch M, et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 2012;40(11):5023-5033. doi: 10.1093/nar/gks144

 

  1. Chen H, Yang H, Zhu X, et al. m5C modification of mRNA serves a DNA damage code to promote homologous recombination. Nat Commun. 2020;11(1):2834. doi: 10.1038/s41467-020-16722-7

 

  1. Chen YT, Shen JY, Chen DP, et al. Identification of cross-talk between m6A and 5mC regulators associated with onco-immunogenic features and prognosis across 33 cancer types. J Hematol Oncol J Hematol Oncol. 2020;13(1):22. doi: 10.1186/s13045-020-00854-w

 

  1. Pan J, Huang Z, Xu Y. m5C-Related lncRNAs predict overall survival of patients and regulate the tumor immune microenvironment in lung adenocarcinoma. Front Cell Dev Biol. 2021;9:671821. doi: 10.3389/fcell.2021.671821

 

  1. Frye M, Watt FM. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol CB. 2006;16(10):971-981. doi: 10.1016/j.cub.2006.04.027

 

  1. Brzezicha B, Schmidt M, Makalowska I, Jarmolowski A, Pienkowska J, Szweykowska-Kulinska Z. Identification of human tRNA: m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res. 2006;34(20):6034-6043. doi: 10.1093/nar/gkl765

 

  1. Goll MG, Kirpekar F, Maggert KA, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 2006;311(5759):395-398. doi: 10.1126/science.1120976

 

  1. Mechanism and Biological Role of Dnmt2 in Nucleic Acid Methylation-PubMed. Available from: https://pubmed.ncbi. nlm.nih.gov/27232191 [Last accessed on 2024 Dec 23].

 

  1. Haag S, Sloan KE, Ranjan N, et al. NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. EMBO J. 2016;35(19):2104-2119. doi: 10.15252/embj.201694885

 

  1. Yang X, Yang Y, Sun BF, et al. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 2017;27(5):606-625. doi: 10.1038/cr.2017.55

 

  1. Bohnsack KE, Höbartner C, Bohnsack MT. Eukaryotic 5-methylcytosine (m5C) RNA methyltransferases: Mechanisms, cellular functions, and links to disease. Genes (Basel). 2019;10(2):102. doi: 10.3390/genes10020102

 

  1. Pan W, Liu X, Liu S. ALYREF m5C RNA methylation reader predicts bladder cancer prognosis by regulating the tumor immune microenvironment. Medicine (Baltimore). 2024;103(14):e37590. doi: 10.1097/MD.0000000000037590

 

  1. Wang N, Chen RX, Deng MH, et al. m5C-dependent cross-regulation between nuclear reader ALYREF and writer NSUN2 promotes urothelial bladder cancer malignancy through facilitating RABL6/TK1 mRNAs splicing and stabilization. Cell Death Dis. 2023;14(2):139. doi: 10.1038/s41419-023-05661-y

 

  1. Wang JZ, Zhu W, Han J, et al. The role of the HIF-1α/ALYREF/ PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun (Lond). 2021;41(7):560-575. doi: 10.1002/cac2.12158

 

  1. Dunn DB. The occurrence of 1-methyladenine in ribonucleic acid. Biochim Biophys Acta. 1961;46:198-200. doi: 10.1016/0006-3002(61)90668-0

 

  1. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, et al. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016;530(7591):441-446. doi: 10.1038/nature16998

 

  1. Li X, Xiong X, Wang K, et al. Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat Chem Biol. 2016;12(5):311-316. doi: 10.1038/nchembio.2040

 

  1. Oerum S, Dégut C, Barraud P, Tisné C. m1A post-transcriptional modification in tRNAs. Biomolecules. 2017;7(1):20. doi: 10.3390/biom7010020

 

  1. Yin JJ, Song YL, Guo YF, et al. Transcriptome-wide 1-methyladenosine functional profiling of messenger RNA and long non-coding RNA in bladder cancer. Front Genet. 2024;15:1333931. doi: 10.3389/fgene.2024.1333931

 

  1. Stern L, Schulman LH. The role of the minor base N4- acetylcytidine in the function of the Escherichia coli noninitiator methionine transfer RNA. J Biol Chem. 1978;253(17):6132-6139.

 

  1. Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: A database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46(D1):D303-D307. doi: 10.1093/nar/gkx1030

 

  1. Arango D, Sturgill D, Alhusaini N, et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018;175(7):1872.e24-1886.e24. doi: 10.1016/j.cell.2018.10.030

 

  1. Sleiman S, Dragon F. Recent advances on the structure and function of RNA acetyltransferase Kre33/NAT10. Cells. 2019;8(9):1035. doi: 10.3390/cells8091035

 

  1. Chen L, Wang WJ, Liu Q, et al. NAT10-mediated N4- acetylcytidine modification is required for meiosis entry and progression in male germ cells. Nucleic Acids Res. 2022;50(19):10896-10913. doi: 10.1093/nar/gkac594

 

  1. Shuai Y, Zhang H, Liu C, et al. CLIC3 interacts with NAT10 to inhibit N4-acetylcytidine modification of p21 mRNA and promote bladder cancer progression. Cell Death Dis. 2024;15(1):9. doi: 10.1038/s41419-023-06373-z

 

  1. Xie R, Cheng L, Huang M, et al. NAT10 drives cisplatin chemoresistance by enhancing ac4C-associated DNA repair in bladder cancer. Cancer Res. 2023;83(10):1666-1683. doi: 10.1158/0008-5472.CAN-22-2233

 

  1. Wang G, Zhang M, Zhang Y, et al. NAT10-mediated mRNA N4-acetylcytidine modification promotes bladder cancer progression. Clin Transl Med. 2022;12(5):e738. doi: 10.1002/ctm2.738

 

  1. Zhang C, Xia J, Zhang S, Li J, Zhou T, Hu K. Expression pattern, tumor immune landscape, and prognostic value of N7methylguanosine regulators in bladder urothelial carcinoma. Oncol Lett. 2023;25(4):169. doi: 10.3892/ol.2023.13755

 

  1. Ying X, Liu B, Yuan Z, et al. METTL1-m7 G-EGFR/EFEMP1 axis promotes the bladder cancer development. Clin Transl Med. 2021;11(12):e675. doi: 10.1002/ctm2.675

 

  1. Ren L, Yang X, Liu J, et al. An innovative model based on N7- methylguanosine-related lncRNAs for forecasting prognosis and tumor immune landscape in bladder cancer. Cancer Cell Int. 2023;23(1):85. doi: 10.1186/s12935-023-02933-7

 

  1. Xie H, Wang M, Yu H, et al. METTL1 drives tumor progression of bladder cancer via degrading ATF3 mRNA in an m(7) G-modified miR-760-dependent manner. Cell Death Discov. 2022;8(1):458. doi: 10.1038/s41420-022-01236-6

 

  1. Begley U, Sosa MS, Avivar-Valderas A, et al. A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-α. EMBO Mol Med. 2013;5(3): 366-383. doi: 10.1002/emmm.201201161

 

  1. Li Z, Wang S, Chen Y, Huang Y, Li T. 5-Methylcytosine-related long noncoding RNAs are potential biomarkers to predict overall survival and regulate tumor-immune environment in patients with bladder cancer. Dis Markers. 2022;2022:3117359. doi: 10.1155/2022/3117359

 

  1. Monshaugen I, Luna L, Rhodes J, et al. Depletion of the m1A writer TRMT6/TRMT61A reduces proliferation and resistance against cellular stress in bladder cancer. Front Oncol. 2023;13:1334112. doi: 10.3389/fonc.2023.1334112

 

  1. Xie J, Zhang H, Wang K, et al. M6A-mediated-upregulation of lncRNA BLACAT3 promotes bladder cancer angiogenesis and hematogenous metastasis through YBX3 nuclear shuttling and enhancing NCF2 transcription. Oncogene. 2023;42(40):2956-2970. doi: 10.1038/s41388-023-02814-3

 

  1. Tao L, Mu X, Chen H, et al. FTO modifies the m6A level of MALAT and promotes bladder cancer progression. Clin Transl Med. 2021;11(2):e310. doi: 10.1002/ctm2.310

 

  1. Li F, Zhang H, Huang Y, et al. Single-cell transcriptome analysis reveals the association between histone lactylation and cisplatin resistance in bladder cancer. Drug Resist Updat. 2024;73:101059. doi: 10.1016/j.drup.2024.101059

 

  1. Zhang Y, Zhu B, He M, et al. N6-methylandenosine-related lncRNAs predict prognosis and immunotherapy response in bladder cancer. Front Oncol. 2021;11:710767. doi: 10.3389/fonc.2021.710767

 

  1. Huang Y, Xia W, Dong Z, Yang CG. Chemical inhibitors targeting the oncogenic m6 A modifying proteins. Acc Chem Res. 2023;56(21):3010-3022.doi: 10.1021/acs.accounts.3c00451

 

  1. Li Q, Huang Y, Liu X, Gan J, Chen H, Yang CG. Rhein inhibits AlkB repair enzymes and sensitizes cells to methylated DNA damage. J Biol Chem. 2016;291(21):11083-11093. doi: 10.1074/jbc.M115.711895

 

  1. Huang Y, Su R, Sheng Y, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 2019;35(4):677.e10-691.e10. doi: 10.1016/j.ccell.2019.03.006

 

  1. Wang L, Hui H, Agrawal K, et al. m6 A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J. 2020;39(20):e104514. doi: 10.15252/embj.2020104514

 

  1. STORM Therapeutics Presented Interim Phase 1 Clinical Data on its METTL3 RNA Methyltransferase Inhibitor STC- 15 at ASCO 2024|Harnessing the Power of RNA Epigenetics- Cambridge, UK-STORM Therapeutics. Available from: https:// www.stormtherapeutics.com/news/press-releases/storm-therapeutics-presented-interim-phase-1-clinical-data-on-its-mettl3-rna-methyltransferase-inhibitor-stc-15-at-asco-2024 [Last accessed on 2024 Dec 19].
Conflict of interest
The authors declare no relevant financial or non-financial interests to disclose.
Share
Back to top
Bladder, Electronic ISSN: 2327-2120 Print ISSN: TBA, Published by POL Scientific