POL Scientific / Bladder / Volume 11 / Issue 2 / DOI: 10.14440/bladder.2024.0015
Cite this article
9
Download
13
Citations
145
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Modulation of persistent bladder pain in mice: The role of macrophage migration inhibitory factor, high mobility group box-1, and downstream signaling pathways

Shaojing Ye1 Fei Ma1 Dlovan F.D. Mahmood1 Pedro L. Vera1,2*
Show Less
1 Lexington VA Health Care System, Research and Development, Lexington, KY, USA
2 Department of Physiology, School of Medicine, University of Kentucky, Lexington, KY, USA
Bladder 2024 , 11(2), e21200011; https://doi.org/10.14440/bladder.2024.0015
Submitted: 10 July 2024 | Revised: 15 August 2024 | Accepted: 14 September 2024 | Published: 28 October 2024
© 2024 by the Bladder published by POL Scientific. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Background: Repeated intravesical activation of protease-activated receptor-4 (PAR4) serves as a model of persistent bladder hyperalgesia (BHA) in mice, which lasts several days after the final stimulus. Spinal macrophage migration inhibitory factor (MIF) and high mobility group box 1 (HMGB1) are critical mediators in the persistence of BHA. Objective: We aimed to identify effective systemic treatments for persistent BHA using antagonists or transgenic deletions. Methods: Persistent BHA was induced through transurethral instillations of a PAR4-activating peptide (PAR4-AP; 100 μM, 1 h; scrambled peptide, control) under anesthesia, administered on Days 0, 2, and 4. Lower abdominal hypersensitivity was measured on Days 0–4 and 7–9. Systemic injections from Days 2–8 included ISO-1 (a MIF antagonist), ethyl pyruvate (an inhibitor of HMGB1 release), phosphate-buffered saline, or 10% DMSO (vehicle control) in C57BL/6 mice. To examine the role of HMGB1 receptors, Toll-like receptor-4 (TLR4)-null mice or systemic treatment with FPS-ZM1 (receptor for advanced glycation end product [RAGE] antagonist) were used. In addition, TIR-domain-containing adaptor-inducing interferon-β (TRIF)-null mice were tested to assess the involvement of TLR4 signaling pathways. Micturition volume and frequency were assessed on Day 9, and the bladder was histopathologically examined to assess inflammation and edema. Results: MIF antagonism significantly reversed persistent BHA, whereas HMGB1 antagonism led to a partial reduction of persistent BHA. TLR4 deficiency or systemic administration of FPS-ZM1 significantly mitigated persistent BHA, while TRIF-deficient mice experienced a faster onset of BHA. Only MIF or HMGB1 inhibition resulted in increased micturition volume. The histopathological examination revealed no changes in inflammation or edema. Conclusion: MIF and HMGB1, acting through TLR4 and RAGE, mediated persistent BHA, while TRIF might modulate its onset. Further exploration of downstream TLR4 signaling may uncover novel therapeutic targets for treating persistent bladder pain.

Keywords
Macrophage migration inhibitory factor
High mobility group box-1
Toll-like receptor-4
RAGE
Bladder pain
Funding
This research was supported by funding from the NIH (DK121695; PLV).
References
  1. Hanno PM, Erickson D, Moldwin R, Faraday MM. Diagnosis and treatment of interstitial cystitis/bladder pain syndrome: AUA guideline amendment. J Urol. 2015;193(5):1545-1553. doi: 10.1016/j.juro.2015.01.086

 

  1. Li J, Yi X, Ai J. Broaden horizons: The advancement of interstitial cystitis/bladder pain syndrome. Int J Mol Sci. 2022;23(23):14594. doi: 10.3390/ijms232314594

 

  1. Akiyama Y, Hanno P. Phenotyping of interstitial cystitis/ bladder pain syndrome. Int J Urol. 2019;26(S1):17-19. doi: 10.1111/iju.13969

 

  1. Whitmore KE, Fall M, Sengiku A, Tomoe H, Logadottir Y, Kim YH. Hunner lesion versus non-hunner lesion interstitial cystitis/bladder pain syndrome. Int J Urol. 2019;26(S1):26-34. doi: 10.1111/iju.13971

 

  1. Killinger KA, Boura JA, Peters KM. Pain in interstitial cystitis/bladder pain syndrome: Do characteristics differ in ulcerative and non-ulcerative subtypes? Int Urogynecol J. 2012;24(8):1295-1301. doi: 10.1007/s00192-012-2003-9

 

  1. Ma F, Hunt DE, Leng L, Bucala R, Meyer-Siegler KL, Vera PL. Protease-activated receptor 4 activation as a model of persistent bladder pain: Essential role of macrophage migration inhibitory factor and high mobility group box 1. Int J Urol. 2018;25(10):887-93. doi: 10.1111/iju.13778

 

  1. Donnelly SC, Bucala R. Macrophage migration inhibitory factor: A regulator of glucocorticoid activity with a critical role in inflammatory disease. Mol Med Today. 1997;3(11):502-507. doi: 10.1016/s1357-4310(97)01133-7

 

  1. Vera PL, Meyer-Siegler KL. Anatomical location of macrophage migration inhibitory factor in urogenital tissues, peripheral ganglia and lumbosacral spinal cord of the rat. BMC Neurosci. 2003;4(1):17. doi: 10.1186/1471-2202-4-17

 

  1. Bacher M, Meinhardt A, Lan HY, et al. MIF expression in the rat brain: Implications for neuronal function. Mol Med. 1998;4(4):217-230. doi: 10.1007/bf03401919

 

  1. Ma F, Meyer-Siegler KL, Leng L, Bucala R, Vera PL. Spinal macrophage migration inhibitory factor and high mobility group box 1 mediate persistent bladder pain. Neurosci Lett. 2019;699:54-58. doi: 10.1016/j.neulet.2019.01.046

 

  1. Lee KW, Kim WB, Lee SW, et al. Alterations of macrophage migration inhibitory factor expression in the nervous system of the rat cystitis model. Urol Int. 2017;98:228-235. doi: 10.1159/000456077

 

  1. Kapurniotu A, Gokce O, Bernhagen J. The multitasking potential of alarmins and atypical chemokines. Front Med (Lausanne). 2019;6:3. doi: 10.3389/fmed.2019.00003

 

  1. Paudel YN, Angelopoulou E, Piperi C, Balasubramaniam VR, Othman I, Shaikh MF. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: Updates on receptor signalling. Eur J Pharmacol. 2019;858:172487. doi: 10.1016/j.ejphar.2019.172487

 

  1. Andersson U, Tracey KJ, Yang H. Post-translational modification of HMGB1 disulfide bonds in stimulating and inhibiting inflammation. Cells. 2021;10(12):3323. doi: 10.3390/cells10123323

 

  1. Yang H, Wang H, Andersson U. Targeting inflammation driven by HMGB1. Front Immunol. 2020;11:484. doi: 10.3389/fimmu.2020.00484

 

  1. Agalave NM, Svensson CI. Extracellular high-mobility group box 1 protein (HMGB1) as a mediator of persistent pain. Mol Med. 2014;20(1):56978. doi: 10.2119/molmed.2014.00176

 

  1. Morioka N, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. High mobility group box-1: A therapeutic target for analgesia and associated symptoms in chronic pain. Biochem Pharmacol. 2024;222:116058. doi: 10.1016/j.bcp.2024.116058

 

  1. Hiramoto S, Tsubota M, Yamaguchi K, et al. Cystitis-related bladder pain involves ATP-dependent HMGB1 release from macrophages and its downstream H2S/Cav3.2 Signaling in mice. Cells. 2020;9(8):1748. doi: 10.3390/cells9081748

 

  1. Irie Y, Tsubota M, Maeda M, et al. HMGB1 and its membrane receptors as therapeutic targets in an intravesical substance P-induced bladder pain syndrome mouse model. J Pharmacol Sci. 2020;143(2):112-116. doi: 10.1016/j.jphs.2020.03.002

 

  1. Cui X, Jing X, Lutgendorf SK, et al. Cystitis induced bladder pain is Toll-like receptor 4 dependent in a transgenic autoimmune cystitis murine model: A MAPP Research Network animal study. Am J Physiol Renal Physiol. 2019;317(1):F90-F98. doi: 10.1152/ajprenal.00017.2019

 

  1. Sauler M, Zhang Y, Min J, et al. Endothelial CD74 mediates macrophage migration inhibitory factor protection in hyperoxic lung injury. FASEB J. 2015;29(5):1940-1949. doi: 10.1096/fj.14-260299

 

  1. Xue J, Suarez JS, Minaai M, et al. HMGB1 as a therapeutic target in disease. J Cell Physiol. 2020;236(5):3406-3419. doi: 10.1002/jcp.30125

 

  1. Ye S, Agalave NM, Ma F, et al. MIF-modulated spinal proteins associated with persistent bladder pain: A proteomics study. Int J Mol Sci. 2024;25(8):4484. doi: 10.3390/ijms25084484

 

  1. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55-63. doi: 10.1016/0165-0270(94)90144-9

 

  1. Jankauskas SS, Wong DWL, Bucala R, Djudjaj S, Boor P. Evolving complexity of MIF signaling. Cell Signal. 2019;57:76-88. doi: 10.1016/j.cellsig.2019.01.006

 

  1. Dios A, Mitchell RA, Aljabari B, et al. Inhibition of MIF bioactivity by rational design of pharmacological inhibitors of MIF tautomerase activity. J Med Chem. 2002;45(12):2410-2416. doi: 10.1021/jm010534q

 

  1. Stokes JA, Cheung J, Eddinger K, Corr M, Yaksh TL. Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice. J Neuroinflammation. 2013;10(1):148. doi: 10.1186/1742-2094-10-148

 

  1. Sugino Y, Kanematsu A, Hayashi Y, et al. Voided stain on paper method for analysis of mouse urination. Neurourol Urodyn. 2008;27(6):548-552. doi: 10.1002/nau.20552

 

  1. R Core Team. A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2022.

 

  1. Seo MS, Kim HJ, Kim H, Park SW. Ethyl pyruvate directly attenuates active secretion of HMGB1 in proximal tubular cells via induction of heme oxygenase-1. J Clin Med. 2019;8(5):629. doi: 10.3390/jcm8050629

 

  1. Davé SH, Tilstra JS, Matsuoka K, et al. Ethyl pyruvate decreases HMGB1 release and ameliorates murine colitis. J Leukoc Biol. 2009;86(3):633-643. doi: 10.1189/jlb.1008662

 

  1. Deane R, Singh I, Sagare AP, et al. A multimodal RAGEspecific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Investig. 2012;122(4):1377-1392. doi: 10.1172/jci58642

 

  1. Kuzmich N, Sivak K, Chubarev V, Porozov Y, Savateeva- Lyubimova T, Peri F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel). 2017;5(4):34. doi: 10.3390/vaccines5040034

 

  1. Basil MC, Levy BD. Specialized pro-resolving mediators: Endogenous regulators of infection and inflammation. Nat Rev Immunol. 2015;16(1):51-67. doi: 10.1038/nri.2015.4

 

  1. Bon K, Lichtensteiger CA, Wilson SG, Mogil JS. Characterization of cyclophosphamide cystitis, a model of visceral and referred pain, in the mouse: species and strain differences. J Urol. 2003;170:1008-1012. doi: 10.1097/01.ju.0000079766.49550.94

 

  1. Tanaka J, Yamaguchi K, Ishikura H, et al. Bladder pain relief by HMGB1 neutralization and soluble thrombomodulin in mice with cyclophosphamide-induced cystitis. Neuropharmacology. 2014;79:112-118. doi: 10.1016/j.neuropharm.2013.11.003

 

  1. Chiu IM, Heesters BA, Ghasemlou N, et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature. 2013;501(7465):52-57. doi: 10.1038/nature12479

 

  1. Yadav S, Singh A, Kant R, Surolia A. TLR4 activation by lysozyme induces pain without inflammation. Front Immunol. 2023;14:1065226. doi: 10.3389/fimmu.2023.1065226

 

  1. Rosen JM, Klumpp DJ. Mechanisms of pain from urinary tract infection. Int J Urol. 2014;21 Suppl 1:26-32. doi: 10.1111/iju.12309

 

  1. Ye S, Agalave NM, Ma F, et al. Lumbosacral spinal proteomic changes during PAR4-induced persistent bladder pain. Neurosci Lett. 2023;818:137563. doi: 10.1016/j.neulet.2023

 

  1. Lerch JK, Puga DA, Bloom O, Popovich PG. Glucocorticoids and macrophage migration inhibitory factor (MIF) are neuroendocrine modulators of inflammation and neuropathic pain after spinal cord injury. Semin Immunol. 2014;26(5):409-414. doi: 10.1016/j.smim.2014.03.004

 

  1. Wang F, Shen X, Guo X, et al. Spinal macrophage migration inhibitory factor contributes to the pathogenesis of inflammatory hyperalgesia in rats. Pain. 2010;148(2):275-283. doi: 10.1016/j.pain.2009.11.011

 

  1. Cho Y, Crichlow GV, Vermeire JJ, et al. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc Natl Acad Sci U S A. 2010;107(25):11313-1138. doi: 10.1073/pnas.1002716107

 

  1. Angelopoulou E, Pyrgelis ES, Piperi C. Emerging potential of the phosphodiesterase (PDE) inhibitor ibudilast for neurodegenerative diseases: An update on preclinical and clinical evidence. Molecules. 2022;27(23):8448. doi: 10.3390/molecules27238448

 

  1. Yang L, Yang C, Wang L, Yang Z, Guo D, Fan C. Repurposing old drugs as novel inhibitors of human MIF from structural and functional analysis. Bioorg Med Chem Lett. 2022;55:128445. doi: 10.1016/j.bmcl.2021.128445

 

  1. Wu NC, Wang JJ. Ibudilast, a Phosphodiesterase inhibitor and toll-like receptor-4 antagonist, improves hemorrhagic shock and reperfusion-induced left ventricular dysfunction by reducing myocardial tumor necrosis factor α. Transplant Proc. 2020;52(6):1869-1874. doi: 10.1016/j.transproceed.2020.02.145

 

  1. Fujita M, Tamano R, Yoneda S, et al. Ibudilast produces anti-allodynic effects at the persistent phase of peripheral or central neuropathic pain in rats: Different inhibitory mechanism on spinal microglia from minocycline and propentofylline. Eur J Pharmacol. 2018;833:263-274. doi: 10.1016/j.ejphar.2018.06.009

 

  1. Fox RJ, Coffey CS, Conwit R, et al. Phase 2 trial of ibudilast in progressive multiple sclerosis. N Engl J Med. 2018;379(9):846-855. doi: 10.1056/nejmoa1803583

 

  1. Rudick CN, Billips BK, Pavlov VI, Yaggie RE, Schaeffer AJ, Klumpp DJ. Host-pathogen interactions mediating pain of urinary tract infection. J Infect Dis. 2010;201:1240-1249. doi: 10.1086/651275

 

  1. Schrepf A, Bradley CS, O’Donnell M, et al. Toll-like receptor 4 and comorbid pain in interstitial cystitis/bladder pain syndrome: A multidisciplinary approach to the study of chronic pelvic pain research network study. Brain Behav Immun. 2015;49:66-74. doi: 10.1016/j.bbi.2015.03.003
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
Bladder, Electronic ISSN: 2327-2120 Print ISSN: TBA, Published by POL Scientific