POL Scientific / Bladder / Volume 11 / Issue 1 / DOI: 10.14440/bladder.2024.0003
REVIEW

A narrative review of advances in the management of urothelial cancer: Diagnostics and treatments

Shaoxu Wu1,2,3† Shengwei Xiong4,5,6,7† Juan Li8† Guibin Hong1 Ye Xie1 Qi Tang4,5,6,7 Han Hao4,5,6,7 Xinan Sheng8* Xuesong Li4,5,6,7* Tianxin Lin1,2,3*
Show Less
1 Department of Urology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
2 Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
3 Guangdong Provincial Clinical Research Centre for Urological Diseases, Guangzhou, China
4 Department of Urology, Peking University First Hospital, Beijing, China
5 Institution of Urology, Peking University, Beijing, China
6 Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
7 National Urological Cancer Center, Beijing, China
8 Department of Genitourinary Oncology, Peking University Cancer Hospital & Institute, Beijing, China
Bladder 2024 , 11(1), e21200003; https://doi.org/10.14440/bladder.2024.0003
Submitted: 28 May 2024 | Revised: 16 July 2024 | Accepted: 22 July 2024 | Published: 16 August 2024
© 2024 by the Bladder published by POL Scientific. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Urothelial carcinoma (UC) refers to the malignancies originating from transitional epithelium located on the upper and lower urinary tract. Precise diagnosis of UC is crucial since it dictates the treatment efficacy and prognosis of UC patients. Conventional diagnostic approaches of UC mainly fall into four types, including liquid biopsy, imaging examination, endoscopic examination, and histopathological assessment, among others, each of them has contributed to a more accurate diagnosis of the condition. Therapeutically, UC is primarily managed through surgical intervention. In recent years, minimally invasive surgery (MIS) has been incrementally used and is showing superiority in terms of lowered perioperative morbidity and quicker recovery with similar oncological outcomes achieved. For advanced UC (aUC), medical therapy is dominant. While platinum-based chemotherapies are the standard first-line option for aUC, some novel treatment alternatives have recently been introduced, such as immune checkpoint inhibitors (ICIs), targeted therapies, and antibody-drug conjugates (ADCs). ADCs, a group of sophisticated biopharmaceutical agents consisting of monoclonal antibodies, cytotoxic payload, and linker, have been increasingly drawing the attention of clinicians. In this review, we synthesize the recent developments in the precise diagnosis of UC and provide an overview of the treatment options available, including MIS for UC and emerging medications, especially ADCs of aUC.

Keywords
Diagnosis
Immunoconjugates
Surgery
Therapy
Urethral neoplasms
Urinary bladder neoplasm
Funding
None.
References
  1. Babjuk M, Burger M, Capoun O, et al. European Association of Urology Guidelines on Non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in situ). Eur Urol. 2022;81:75-94. doi: 10.1016/j.eururo.2021.08.010

 

  1. Rouprêt M, Seisen T, Birtle AJ, et al. European Association of Urology guidelines on upper urinary tract urothelial carcinoma: 2023 update. Eur Urol. 2023;84:49-64. doi: 10.1016/j.eururo.2023.03.013

 

  1. Shvero A, Hubosky SG. Management of upper tract urothelial carcinoma. Curr Oncol Rep. 2022;24:611-619. doi: 10.1007/s11912-021-01179-8

 

  1. Babjuk M, Burger M, Capoun O, et al. European Association of Urology guidelines on non-muscle-invasive bladder cancer (TaT1 and carcinoma in situ)-2019 update. Eur Urol. 2019;76:639-657. doi: 10.1016/j.eururo.2019.08.016

 

  1. Dimashkieh H, Wolff DJ, Smith TM, Houser PM, Nietert PJ, Yang J. Evaluation of urovysion and cytology for bladder cancer detection: A study of 1835 paired urine samples with clinical and histologic correlation. Cancer Cytopathol. 2013;121:591-597. doi: 10.1002/cncy.21327

 

  1. Lin T, Liu Z, Liu L, et al. Prospective evaluation of fluorescence in situ hybridization for diagnosing urothelial carcinoma. Oncol Lett. 2017;13:3928-3934. doi: 10.3892/ol.2017.5926

 

  1. Rouprêt M, Babjuk M, Burger M, et al. European Association of Urology guidelines on upper urinary tract urothelial carcinoma: 2020 update. Eur Urol. 2021;79:62-79. doi: 10.1016/j.eururo.2020.05.042

 

  1. Wu S, Shen R, Hong G, et al. Development and validation of an artificial intelligence-based model for detecting urothelial carcinoma using urine cytology images: A multicentre, diagnostic study with prospective validation. EClinicalMedicine. 2024;71:102566. doi: 10.1016/j.eclinm.2024.102566

 

  1. Ruan W, Chen X, Huang M, et al. A urine-based DNA methylation assay to facilitate early detection and risk stratification of bladder cancer. Clin Epigenet. 2021;13:91. doi: 10.1186/s13148-021-01073-x

 

  1. Wu J, Lin Y, Yang K, et al. Clinical effectiveness of a multitarget urine DNA test for urothelial carcinoma detection: A double-blinded, multicenter, prospective trial. Mol Cancer. 2024;23:57. doi: 10.1186/s12943-024-01974-4

 

  1. Dahmcke CM, Steven KE, Larsen LK, et al. A prospective blinded evaluation of urine-DNA testing for detection of urothelial bladder carcinoma in patients with gross hematuria. Eur Urol. 2016;70:916-919. doi: 10.1016/j.eururo.2016.06.035

 

  1. Zhang ZG, Buller B, Chopp M. Exosomes - beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol. 2019;15:193-203. doi: 10.1038/s41582-018-0126-4

 

  1. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol. 2018;15:617-638. doi: 10.1038/s41571-018-0036-9

 

  1. Chen C, Zheng H, Luo Y, et al. SUMOylation promotes extracellular vesicle-mediated transmission of lncRNA ELNAT1 and lymph node metastasis in bladder cancer. J Clin Invest. 2021;131:e146431. doi: 10.1172/jci146431

 

  1. He W, Zhong G, Jiang N, et al. Long noncoding RNA BLACAT2 promotes bladder cancer-associated lymphangiogenesis and lymphatic metastasis. J Clin Invest. 2022;132:e163716. doi: 10.1172/jci163716

 

  1. Nicolau C, Bunesch L, Peri L, et al. Accuracy of contrast-enhanced ultrasound in the detection of bladder cancer. Br J Radiol. 2011;84:1091-1099. doi: 10.1259/bjr/43400531

 

  1. Hilton S, Jones LP. Recent advances in imaging cancer of the kidney and urinary tract. Surg Oncol Clin N Am. 2014;23:863-910. doi: 10.1016/j.soc.2014.06.001

 

  1. Tsampoulas C, Tsili AC, Giannakis D, Alamanos Y, Sofikitis N, Efremidis SC. 16-MDCT cystoscopy in the evaluation of neoplasms of the urinary bladder. AJR Am J Roentgenol. 2008;190:729-35. doi: 10.2214/ajr.07.3054

 

  1. Tritschler S, Mosler C, Straub J, et al. Staging of muscle-invasive bladder cancer: Can computerized tomography help us to decide on local treatment? World J Urol. 2012;30:827-831. doi: 10.1007/s00345-011-0817-6

 

  1. Huang L, Kong Q, Liu Z, Wang J, Kang Z, Zhu Y. The diagnostic value of MR imaging in differentiating T staging of bladder cancer: A meta-analysis. Radiology. 2018;286:502-511. doi: 10.1148/radiol.2017171028

 

  1. Epstein JI, Egevad L, Humphrey PA, Montironi R. Best practices recommendations in the application of immunohistochemistry in the prostate: Report from the International Society of Urologic Pathology consensus conference. Am J Surg Pathol. 2014;38:e6-e19. doi: 10.1097/pas.0000000000000238

 

  1. Janisch F, Shariat SF, Baltzer P, et al. Diagnostic performance of multidetector computed tomographic (MDCTU) in upper tract urothelial carcinoma (UTUC): A systematic review and meta-analysis. World J Urol. 2020;38:1165-1175. doi: 10.1007/s00345-019-02875-8

 

  1. Takahashi N, Glockner JF, Hartman RP, et al. Gadolinium enhanced magnetic resonance urography for upper urinary tract malignancy. J Urol. 2010;183:1330-1365. doi: 10.1016/j.juro.2009.12.031

 

  1. Einerhand SM, van Gennep EJ, Mertens LS, et al. 18F-fluoro- 2-deoxy-D-glucose positron emission tomography/computed tomography in muscle-invasive bladder cancer. Curr Opin Urol. 2020;30:654-664. doi: 10.1097/mou.0000000000000798

 

  1. Goodfellow H, Viney Z, Hughes P, et al. Role of fluorodeoxyglucose positron emission tomography (FDG PET)-computed tomography (CT) in the staging of bladder cancer. BJU Int. 2014;114:389-395. doi: 10.1111/bju.12608

 

  1. Jensen TK, Holt P, Gerke O, et al. Preoperative lymph-node staging of invasive urothelial bladder cancer with 18F-fluorodeoxyglucose positron emission tomography/ computed axial tomography and magnetic resonance imaging: Correlation with histopathology. Scand J Urol Nephrol. 2011;45:122-128. doi: 10.3109/00365599.2010.544672

 

  1. Apolo AB, Riches J, Schöder H, et al. Clinical value of fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in bladder cancer. J Clin Oncol. 2010;28:3973-3978. doi: 10.1200/jco.2010.28.7052

 

  1. Lu YY, Chen JH, Liang JA, et al. Clinical value of FDG PET or PET/CT in urinary bladder cancer: A systemic review and meta-analysis. Eur J Radiol. 2012;81:2411-2416. doi: 10.1016/j.ejrad.2011.07.018

 

  1. Kim SJ, Koo PJ, Pak K, Kim IJ, Kim K. Diagnostic accuracy of C-11 choline and C-11 acetate for lymph node staging in patients with bladder cancer: A systematic review and meta-analysis. World J Urol. 2018;36:331-340. doi: 10.1007/s00345-017-2168-4

 

  1. Wu S, Zheng J, Li Y, et al. Development and validation of an MRI-based radiomics signature for the preoperative prediction of lymph node metastasis in bladder cancer. EBioMedicine. 2018;34:76-84. doi: 10.1016/j.ebiom.2018.07.029

 

  1. Rink M, Babjuk M, Catto JW, et al. Hexyl aminolevulinate-guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non-muscle-invasive bladder cancer: A critical review of the current literature. Eur Urol. 2013;64:624-638. doi: 10.1016/j.eururo.2013.07.007

 

  1. Burger M, Grossman HB, Droller M, et al. Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy: A meta-analysis of detection and recurrence based on raw data. Eur Urol. 2013;64:846-854. doi: 10.1016/j.eururo.2013.03.059

 

  1. Russo GI, Sholklapper TN, Cocci A, et al. Performance of narrow band imaging (NBI) and photodynamic diagnosis (PDD) fluorescence imaging compared to white light cystoscopy (WLC) in detecting non-muscle invasive bladder cancer: A systematic review and lesion-level diagnostic meta-analysis. Cancers (Basel). 2021;13:4378. doi: 10.3390/cancers13174378

 

  1. Kriegmair MC, Rother J, Grychtol B, et al. Multiparametric cystoscopy for detection of bladder cancer using real-time multispectral imaging. Eur Urol. 2020;77:251-259. doi: 10.1016/j.eururo.2019.08.024

 

  1. Ali N, Bolenz C, Todenhöfer T, et al. Deep learning-based classification of blue light cystoscopy imaging during transurethral resection of bladder tumors. Sci Rep. 2021;11:11629. doi: 10.1038/s41598-021-91081-x

 

 

  1. Lu D, Reed A, Pace N, et al. Automated upper tract urothelial carcinoma tumor segmentation during ureteroscopy using computer vision techniques. J Endourol. 2024; 38:836-842. doi: 10.1089/end.2023.0686

 

  1. McRae MP, Rajsri KS, Alcorn TM, McDevitt JT. Smart diagnostics: Combining artificial intelligence and in vitro diagnostics. Sensors (Basel). 2022;22:6355. doi: 10.3390/s22176355

 

  1. Brausi M, Collette L, Kurth K, et al. Variability in the recurrence rate at first follow-up cystoscopy after TUR in stage Ta T1 transitional cell carcinoma of the bladder: A combined analysis of seven EORTC studies. Eur Urol. 2002;41:523-531. doi: 10.1016/s0302-2838(02)00068-4

 

  1. Zurkirchen MA, Sulser T, Gaspert A, Hauri D. Second transurethral resection of superficial transitional cell carcinoma of the bladder: A must even for experienced urologists. Urol Int. 2004;72:99-102. doi: 10.1159/000075961

 

  1. Mariappan P, Zachou A, Grigor KM. Detrusor muscle in the first, apparently complete transurethral resection of bladder tumour specimen is a surrogate marker of resection quality, predicts risk of early recurrence, and is dependent on operator experience. Eur Urol. 2010;57:843-849. doi: 10.1016/j.eururo.2009.05.047

 

  1. Wu S, Hong G, Xu A, et al. Artificial intelligence-based model for lymph node metastases detection on whole slide images in bladder cancer: A retrospective, multicentre, diagnostic study. Lancet Oncol. 2023;24:360-370. doi: 10.1016/s1470-2045(23)00061-x

 

  1. Tosoni I, Wagner U, Sauter G, et al. Clinical significance of interobserver differences in the staging and grading of superficial bladder cancer. BJU Int. 2000;85:48-53. doi: 10.1046/j.1464-410x.2000.00356.x

 

  1. Engers R. Reproducibility and reliability of tumor grading in urological neoplasms. World J Urol. 2007;25:595-605. doi: 10.1007/s00345-007-0209-0

 

  1. Amin MB, Trpkov K, Lopez-Beltran A, Grignon D. Best practices recommendations in the application of immunohistochemistry in the bladder lesions: Report from the International Society of Urologic Pathology consensus conference. Am J Surg Pathol. 2014;38:e20-34. doi: 10.1097/pas.0000000000000240

 

  1. Pan J, Hong G, Zeng H, et al. An artificial intelligence model for the pathological diagnosis of invasion depth and histologic grade in bladder cancer. J Transl Med. 2023;21:42. doi: 10.1186/s12967-023-03888-z

 

  1. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315-322. doi: 10.1038/nature12965

 

  1. Damrauer JS, Hoadley KA, Chism DD, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci U S A. 2014;111:3110- 3115. doi: 10.1073/pnas.1318376111

 

  1. Choi W, Porten S, Kim S, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25:152-165. doi: 10.1016/j.ccr.2014.01.009

 

  1. Sjödahl G, Lauss M, Lövgren K, et al. A molecular taxonomy for urothelial carcinoma. Clin Cancer Res. 2012;18:3377- 3386. doi: 10.1158/1078-0432.Ccr-12-0077-t

 

  1. Lughezzani G, Sun M, Perrotte P, et al. Should bladder cuff excision remain the standard of care at nephroureterectomy in patients with urothelial carcinoma of the renal pelvis? A population-based study. Eur Urol. 2010;57:956-962. doi: 10.1016/j.eururo.2009.12.001

 

  1. Macejko AM, Pazona JF, Loeb S, Kimm S, Nadler RB. Management of distal ureter in laparoscopic nephroureterectomy--a comprehensive review of techniques. Urology. 2008;72:974-981. doi: 10.1016/j.urology.2008.04.022

 

  1. Matin SF, Gill IS. Recurrence and survival following laparoscopic radical nephroureterectomy with various forms of bladder cuff control. J Urol. 2005;173:395-400. doi: 10.1097/01.ju.0000148851.68215.93

 

  1. Li WM, Shen JT, Li CC, et al. Oncologic outcomes following three different approaches to the distal ureter and bladder cuff in nephroureterectomy for primary upper urinary tract urothelial carcinoma. Eur Urol. 2010;57:963-969. doi: 10.1016/j.eururo.2009.12.032

 

  1. Fairey AS, Kassouf W, Estey E, et al. Comparison of oncological outcomes for open and laparoscopic radical nephroureterectomy: Results from the Canadian Upper Tract Collaboration. BJU Int. 2013;112:791-797. doi: 10.1111/j.1464-410X.2012.11474.x

 

  1. Peyronnet B, Seisen T, Dominguez-Escrig JL, et al. Oncological outcomes of laparoscopic nephroureterectomy versus open radical nephroureterectomy for upper tract urothelial carcinoma: An European Association of Urology guidelines systematic review. Eur Urol Focus. 2019;5:205-223. doi: 10.1016/j.euf.2017.10.003

 

  1. Eun D, Bhandari A, Boris R, Rogers C, Bhandari M, Menon M. Concurrent upper and lower urinary tract robotic surgery: Strategies for success. BJU Int. 2007;100:1121-1125. doi: 10.1111/j.1464-410X.2007.07105.x

 

  1. Zargar H, Krishnan J, Autorino R, et al. Robotic nephroureterectomy: A simplified approach requiring no patient repositioning or robot redocking. Eur Urol. 2014;66:769-777. doi: 10.1016/j.eururo.2014.02.060

 

  1. De Groote R, Decaestecker K, Larcher A, et al. Robot-assisted nephroureterectomy for upper tract urothelial carcinoma: Results from three high-volume robotic surgery institutions. J Robot Surg. 2020;14:211-219. doi: 10.1007/s11701-019-00965-8

 

  1. Aboumohamed AA, Krane LS, Hemal AK. Oncologic outcomes following robot-assisted laparoscopic nephroureterectomy with bladder cuff excision for upper tract urothelial carcinoma. J Urol. 2015;194:1561-1566. doi: 10.1016/j.juro.2015.07.081

 

  1. Lee H, Kim HJ, Lee SE, Hong SK, Byun SS. Comparison of oncological and perioperative outcomes of open, laparoscopic, and robotic nephroureterectomy approaches in patients with non-metastatic upper-tract urothelial carcinoma. PLoS One. 2019;14:e0210401. doi: 10.1371/journal.pone.0210401

 

  1. Grossmann NC, Soria F, Juvet T, et al. Comparing oncological and perioperative outcomes of open versus laparoscopic versus robotic radical nephroureterectomy for the treatment of upper tract urothelial carcinoma: A multicenter, multinational, propensity score-matched analysis. Cancers (Basel). 2023;15:1409. doi: 10.3390/cancers15051409

 

  1. Rodriguez JF, Packiam VT, Boysen WR, et al. Utilization and outcomes of nephroureterectomy for upper tract urothelial carcinoma by surgical approach. J Endourol. 2017;31:661-665. doi: 10.1089/end.2017.0086

 

  1. Kenigsberg AP, Smith W, Meng X, et al. Robotic nephroureterectomy vs laparoscopic nephroureterectomy: Increased utilization, rates of lymphadenectomy, decreased morbidity robotically. J Endourol. 2021;35:312-318. doi: 10.1089/end.2020.0496

 

  1. Li CC, Chang CH, Huang CP, et al. Comparing oncological outcomes and surgical complications of hand-assisted, laparoscopic and robotic nephroureterectomy for upper tract urothelial carcinoma. Front Oncol. 2021;11:731460. doi: 10.3389/fonc.2021.731460

 

  1. Bae H, Chung JH, Song W, et al. Robotic radical nephroureterectomy with bladder cuff excision for upper tract urothelial carcinoma: A trend analysis of utilization and a comparative study. Cancers (Basel). 2022;14:2497. doi: 10.3390/cancers14102497

 

  1. Huang YP, Huang EY, Chung HJ, et al. Is robotic superior to laparoscopic approach for radical nephroureterectomy with bladder cuff excision in treating upper urinary tract urothelial carcinoma? J Endourol. 2023;37:139-146. doi: 10.1089/end.2022.0154

 

  1. Huang J, Lin T, Liu H, et al. Laparoscopic radical cystectomy with orthotopic ileal neobladder for bladder cancer: Oncologic results of 171 cases with a median 3-year follow-up. Eur Urol. 2010;58:442-449. doi: 10.1016/j.eururo.2010.05.046

 

  1. Leow JJ, Reese SW, Jiang W, et al. Propensity-matched comparison of morbidity and costs of open and robot-assisted radical cystectomies: A contemporary population-based analysis in the United States. Eur Urol. 2014;66:569-576. doi: 10.1016/j.eururo.2014.01.029

 

  1. Bochner BH, Dalbagni G, Marzouk KH, et al. Randomized trial comparing open radical cystectomy and robot-assisted laparoscopic radical cystectomy: Oncologic outcomes. Eur Urol. 2018;74:465-471. doi: 10.1016/j.eururo.2018.04.030

 

  1. Parekh DJ, Reis IM, Castle EP, et al. Robot-assisted radical cystectomy versus open radical cystectomy in patients with bladder cancer (RAZOR): An open-label, randomised, phase 3, non-inferiority trial. Lancet. 2018;391:2525-2536. doi: 10.1016/s0140-6736(18)30996-6

 

  1. Ashley MS, Daneshmand S. Factors influencing the choice of urinary diversion in patients undergoing radical cystectomy. BJU Int. 2010;106:654-657. doi: 10.1111/j.1464-410X.2009.09183.x

 

  1. Lee RK, Abol-Enein H, Artibani W, et al. Urinary diversion after radical cystectomy for bladder cancer: Options, patient selection, and outcomes. BJU Int. 2014;113:11-23. doi: 10.1111/bju.12121

 

  1. Hussein AA, May PR, Jing Z, et al. Outcomes of intracorporeal urinary diversion after robot-assisted radical cystectomy: Results from the international robotic cystectomy consortium. J Urol. 2018;199:1302-1311. doi: 10.1016/j.juro.2017.12.045

 

  1. Mastroianni R, Tuderti G, Ferriero M, et al. Robot-assisted radical cystectomy with totally intracorporeal urinary diversion versus open radical cystectomy: 3-year outcomes from a randomised controlled trial. Eur Urol. 2024;85:422-430. doi: 10.1016/j.eururo.2024.01.018

 

  1. Collins JW, Tyritzis S, Nyberg T, et al. Robot-assisted radical cystectomy (RARC) with intracorporeal neobladder - what is the effect of the learning curve on outcomes? BJU Int. 2014;113:100-107. doi: 10.1111/bju.12347

 

  1. Cassim R, Millan B, Guo Y, Hoogenes J, Shayegan B. Minimizing the learning curve for robotic-assisted radical cystectomy a single-surgeon, retrospective, cohort study. Can Urol Assoc J. 2023;17:E252-E256. doi: 10.5489/cuaj.8279

 

  1. Achermann C, Sauer A, Cattaneo M, et al. Retrospective evaluation of a single surgeon’s learning curve of robot-assisted radical cystectomy with intracorporeal urinary diversion via ileal conduit. Cancers (Basel). 2023;15:3799. doi: 10.3390/cancers15153799

 

  1. Tuderti G, Mastroianni R, Anceschi U, et al. Learning curve for intracorporeal robotic Padua ileal bladder: 10-year functional assessment from a high-volume single-centre series. BJU Int. 2024;134:103-109. doi: 10.1111/bju.16328

 

  1. Zuluaga L, Rich JM, Razdan S, et al. Robotic nephroureterectomy supplanting open and laparoscopic approach for upper tract urothelial carcinoma management: A narrative review. Transl Androl Urol. 2023;12:1740-1752. doi: 10.21037/tau-23-73

 

  1. National Institutes of Health, National Cancer Institute. Cancer Stat Facts: Bladder Cancer; 2022. Available from: https://seer.cancer. gov/statfacts/html/urinb.html [Last accessed on 2024 May 10].

 

  1. Sternberg CN, Yagoda A, Scher HI, et al. Preliminary results of M-VAC (methotrexate, vinblastine, doxorubicin and cisplatin) for transitional cell carcinoma of the urothelium. J Urol. 1985;133:403-407. doi: 10.1016/s0022-5347(17)48996-8

 

  1. Powles T, Park SH, Caserta C, et al. Avelumab first-line maintenance for advanced urothelial carcinoma: Results from the JAVELIN bladder 100 trial after ≥2 years of follow-up. J Clin Oncol. 2023;41:3486-3492. doi: 10.1200/jco.22.01792

 

  1. van der Heijden MS, Sonpavde G, Powles T, et al. Nivolumab plus gemcitabine-cisplatin in advanced urothelial carcinoma. N Engl J Med. 2023;389:1778-1789. doi: 10.1056/NEJMoa2309863

 

  1. Balar AV, Castellano D, O’Donnell PH, et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18:1483-1492. doi: 10.1016/s1470-2045(17)30616-2

 

  1. Balar AV, Galsky MD, Rosenberg JE, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet. 2017;389:67-76. doi: 10.1016/s0140-6736(16)32455-2

 

  1. Gupta S, Bellmunt J, Plimack ER, et al. Defining “platinum-ineligible” patients with metastatic urothelial cancer (mUC). J Clin Oncol. 2022;40:4577. doi: 10.1200/JCO.2022.40.16_suppl.4577

 

  1. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Available from: https://www.nccn.org/ login?returnurl=https://www.nccn.org/professionals/ physician_gls/pdf/bladder.pdf [Last accessed on 2024 May 10].

 

  1. US. FDA Grants Regular Approval and Expands Indication for PADCEV® (Enfortumab Vedotin-EJFV) for Patients with Locally Advanced or Metastatic Urothelial Cancer; 2021. Available from: https://www.seagen-investor.seagen. com/press-releases/news-details/2021/u.s.-fda-grants-regular-approval-and-expands-indication-for-padcev-enfortumab-vedotin-ejfv-for-patients-with-locally-advanced-o­r-metastatic-urothelial-cancer/default.aspx [Last accessed on 2024 May 10].

 

  1. Powles T, Valderrama BP, Gupta S, et al. Enfortumab vedotin and pembrolizumab in untreated advanced urothelial cancer. N Engl J Med. 2024;390:875-888. doi: 10.1056/NEJMoa2312117

 

  1. Hoffman-Censits JH, Lombardo KA, Parimi V, et al. Expression of nectin-4 in bladder urothelial carcinoma, in morphologic variants, and nonurothelial histotypes. Appl Immunohistochem Mol Morphol. 2021;29:619-625. doi: 10.1097/pai.0000000000000938

 

  1. Rosenberg JE, O’Donnell PH, Balar AV, et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J Clin Oncol. 2019;37:2592-2600. doi: 10.1200/jco.19.01140

 

  1. Seagen. FDA Grants Regular Approval and Expands Indication for PADCEV® (Enfortumab Vedotin-EJFV) for Patients with Locally Advanced or Metastatic Urothelial Cancer; 2021. Available from: https://www.seagen-investor. seagen.com/press-releases/news-details/2021/u.s.-fda-grants-regular-approval-and-expands-indication-for-padcev-enfortumab-vedotin-ejfv-for-patients-with-locally-advanced-o­r-metastatic-urothelial-cancer/default.aspx [Last accessed on 2024 May 10].

 

  1. Hoimes CJ, Flaig TW, Milowsky MI, et al. Enfortumab vedotin plus pembrolizumab in previously untreated advanced urothelial cancer. J Clin Oncol. 2023;41:22-31. doi: 10.1200/jco.22.01643

 

  1. Rosenberg JE, Milowsky M, Ramamurthy C, et al. LBA73 study EV-103 cohort K: Antitumor activity of enfortumab vedotin (EV) monotherapy or in combination with pembrolizumab (P) in previousl y untreated cisplatin-ineligible patients (pts) with locally advanced or metastatic urothelial cancer (la/mUC). Ann Oncol. 2022;33:S1441. doi: 10.1016/j.annonc.2022.08.079

 

  1. Gupta S, Rosenberg JE, McKay RR, et al. Study EV-103 dose escalation/cohort A: Long-term outcome of enfortumab vedotin + pembrolizumab in first-line (1L) cisplatin-ineligible locally advanced or metastatic urothelial carcinoma (la/mUC) with nearly 4 years of follow-up. J Clin Oncol. 2023;41:4505. doi: 10.1200/JCO.2023.41.16_suppl.4505

 

  1. O’Donnell PH, Milowsky MI, Petrylak DP, et al. Enfortumab vedotin with or without pembrolizumab in cisplatin-ineligible patients with previously untreated locally advanced or metastatic urothelial cancer. J Clin Oncol. 2023;41:4107-4117. doi: 10.1200/jco.22.02887

 

  1. O’Donnell PH, Milowsky MI, Petrylak DP, et al. Enfortumab vedotin (EV) alone or in combination with pembrolizumab (P) in previously untreated cisplatin-ineligible patients with locally advanced or metastatic urothelial cancer (la/mUC): Subgroup analyses of confirmed objective response rate (cORR) from EV-103 cohort K. J Clin Oncol. 2023;41:499. doi: 10.1200/JCO.2023.41.6_suppl.499

 

  1. FDA. FDA Grants Regular Approval to Enfortumab Vedotin- EJFV for Locally Advanced or Metastatic Urothelial Cancer; 2021. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-regular-approval-enfortumab-vedotin-ejfv-locally-advanced-or-metastatic-urothelial-cancer [Last accessed on 2024 May 10].

 

  1. Drakaki A, Kalebasty AR, Lee JL, et al. Phase Ib/II umbrella trial to evaluate the safety and efficacy of multiple 2L cancer immunotherapy (CIT) combinations in advanced/metastatic urothelial carcinoma (mUC): MORPHEUS-mUC. J Clin Oncol. 2020;38:TPS591. doi: 10.1200/JCO.2020.38.6_suppl.TPS591

 

  1. Tagawa ST, Balar AV, Petrylak DP, et al. TROPHY-U-01: A phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors. J Clin Oncol. 2021;39:2474-2485. doi: 10.1200/jco.20.03489

 

  1. Tagawa ST, Balar AV, Petrylak DP, et al. Updated outcomes in TROPHY-U-01 cohort 1, a phase 2 study of sacituzumab govitecan (SG) in patients (pts) with metastatic urothelial cancer (mUC) that progressed after platinum (PT)-based chemotherapy and a checkpoint inhibitor (CPI). J Clin Oncol. 2023;41:526. doi: 10.1200/JCO.2023.41.6_suppl.526

 

  1. Grivas P, Tagawa ST, Bellmunt J, et al. TROPiCS-04: Study of sacituzumab govitecan in metastatic or locally advanced unresectable urothelial cancer that has progressed after platinum and checkpoint inhibitor therapy. J Clin Oncol. 2021;39:TPS498. doi: 10.1200/JCO.2021.39.6_suppl.TPS498

 

  1. Nadal R, Bellmunt J. Management of metastatic bladder cancer. Cancer Treat Rev. 2019;76:10-21. doi: 10.1016/j.ctrv.2019.04.002

 

  1. Lattanzi M, Niederhausern A, Zheng J, et al. Incidence and clinical outcomes of HER2-altered bladder cancer (BC) patients (pts). J Clin Oncol. 2022;40:556. doi: 10.1200/JCO.2022.40.6_suppl.556

 

  1. Choudhury NJ, Campanile A, Antic T, et al. Afatinib activity in platinum-refractory metastatic urothelial carcinoma in patients with ERBB alterations. J Clin Oncol. 2016;34:2165-2171. doi: 10.1200/jco.2015.66.3047

 

  1. Culine S, Sellam Z, Bouaita L, et al. Combining paclitaxel and lapatinib as second-line treatment for patients with metastatic transitional cell carcinoma: A case series. Anticancer Res. 2012;32:3949-3952.

 

  1. Hyman DM, Piha-Paul SA, Won H, et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature. 2018;554:189-194. doi: 10.1038/nature25475

 

  1. Li H, Yu C, Jiang J, et al. An anti-HER2 antibody conjugated with monomethyl auristatin E is highly effective in HER2-positive human gastric cancer. Cancer Biol Ther. 2016;17:346-354. doi: 10.1080/15384047.2016.1139248

 

  1. Xu H, Sheng X, Zhou L, et al. A phase II study of RC48- ADC in HER2-negative patients with locally advanced or metastatic urothelial carcinoma. J Clin Oncol. 2022;40:4519. doi: 10.1200/JCO.2022.40.16_suppl.4519

 

  1. Sheng X, Wang L, He Z, et al. Efficacy and safety of disitamab vedotin in patients with human epidermal growth factor receptor 2-positive locally advanced or metastatic urothelial carcinoma: A combined analysis of two phase II clinical trials. J Clin Oncol. 2024;42:1391-1402. doi: 10.1200/jco.22.02912

 

  1. Sheng X, Zhou L, He Z, et al. Preliminary results of a phase Ib/II combination study of RC48-ADC, a novel humanized anti-HER2 antibody-drug conjugate (ADC) with toripalimab, a humanized IgG4 mAb against programmed death-1 (PD-1) in patients with locally advanced or metastatic urothelial carcinoma. J Clin Oncol. 2022;40:4518. doi: 10.1200/JCO.2022.40.16_suppl.4518

 

  1. Galsky MD, Del Conte G, Foti S, et al. Primary analysis from DS8201-A-U105: A phase 1b, two-part, open-label study of trastuzumab deruxtecan (T-DXd) with nivolumab (nivo) in patients (pts) with HER2-expressing urothelial carcinoma (UC). J Clin Oncol. 2022;40:438. doi: 10.1200/JCO.2022.40.6_suppl.438

 

  1. Mudd GE, Scott H, Chen L, et al. Discovery of BT8009: A Nectin-4 targeting bicycle toxin conjugate for the treatment of cancer. J Med Chem. 2022;65:14337-14347. doi: 10.1021/acs.jmedchem.2c00065

 

  1. Baldini C, Goldschmidt V, Brana I, et al. BT8009-100: A phase I/II study of novel bicyclic peptide and MMAE conjugate BT8009 in patients (pts) with advanced malignancies associated with nectin-4 expression, including urothelial cancer (UC). J Clin Oncol. 2023;41:498. doi: 10.1200/JCO.2023.41.6_suppl.498
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
Bladder, Electronic ISSN: 2327-2120 Print ISSN: TBA, Published by POL Scientific