POL Scientific / Bladder / Volume 10 / Issue 1 / DOI: 10.14440/bladder.2023.854
Cite this article
2
Download
33
Citations
86
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

How brain diseases affect the lower urinary tract function?

Ryuji Sakakibara1 Tatsuya Yamamoto2 Noritoshi Sekido3 Setsu Sawai1
Show Less
1 Neurology, Sakura Medical Center, Toho University, Sakura, Japan;
2 Neurology, Chiba Prefectural University of Health Sciences, Chiba, Japan;
3 Urology, Ohashi Medical Center, Toho University, Sakura, Japan
Bladder 2023 , 10(1), 2;
© 2023 by the author. Licensee POL Scientific, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

This article reviewed brain mechanism of the lower urinary tract (LUT). Among autonomic nervous systems, LUT is unique in terms of afferent pathophysiology; bladder sensation is perceived soon after the storage phase and throughout the voiding phase. Within the brain, this is measured in experimental animals by the firing of single neurons and in humans by evoked potentials/functional neuroimaging. The evidence indicates that sphincter information goes up to the precentral motor cortex and other brain areas, and bladder information goes up to the insular cortex (IC)/anterior cingulate (ACG) and further to the prefrontal cortex (PFC). Another LUT-specific phenomenon is efferent pathophysiology: detrusor overactivity (exaggerated micturition reflex) occurs in brain diseases such as stroke (focal disease) and dementia with Lewy bodies (diffuse diseases, may overlap with each other). With the turning off and on of the brain-switch of mictu-rition (at the periaqueductal gray [PAG]), there is a bladder-inhibitory PFC-IC/ACG-hypothalamus-PAG pathway, with interconnections via the PFC with a PFC-nigrostriatal D1 dopaminergic pathway and a PFC-cerebellar pathway. Brain diseases that affect these areas may cause a loss of the brain's inhibition of the micturition reflex, leading to detrusor overactivity. This has a significant clinical impact on patients and requires appropriate management.

Keywords
brain
bladder
functional neuroimaging
stroke
overactive bladder
References

1. de Groat WC, Griffiths D, Yoshimura N. Neural control of the lower urinary tract. Compr Physiol. 2015 Jan;5(1):327–96. PMID:25589273
2. Andersson KE, Birder L, Chermansky C, Chess-Williams R, Fry C. Are there relevant animal models to set research priorities in LUTD? ICI-RS 2019. Neurourol Urodyn. 2020 Jul;39(Suppl 3 Suppl 3):S9–15. https://doi.org/10.1002/nau.24259 PMID:32662562
3. Drake MJ, Fowler CJ, Griffiths D, Mayer E, Paton JF, Birder L. Neural control of the lower urinary and gastrointestinal tracts: supraspinal CNS mechanisms. Neurourol Urodyn. 2010;29(1):119–27. https://doi.org/10.1002/nau.20841 PMID:20025025
4 Fowler CJ, Griffiths DJ. A decade of functional brain imaging applied to bladder control. Neurourol Urodyn. 2010;29(1):49–55. https://doi.org/10.1002/nau.20740 PMID:19412958
5 Griffiths DJ, Fowler CJ. The micturition switch and its forebrain influences. Acta Physiol (Oxf). 2013 Jan;207(1):93–109. https://doi.org/10.1111/apha.12019 PMID:23164237
6 Sakakibara R, Fowler CJ. Chapter 9: Brain disease. In: Fowler CJ, editor. Seminars in Clinical Neurology (by World Federation of Neurology). Neurologic bladder, bowel, and sexual function. Boston: Elsevier; 2001. pp. 229–43.
7 Blok BF, Holstege G. The central control of micturition and continence: implications for urology. BJU Int. 1999 Mar;83(S2 Suppl 2):1–6. https://doi.org/10.1046/j.1464-410X.83.s2.2.x PMID:10210596
8 Sakakibara R, Nakazawa K, Shiba K, Nakajima Y, Uchiyama T, Yoshiyama M, et al. Firing patterns of micturition-related neurons in the pontine storage centre in cats. Auton Neurosci. 2002 Jul;99(1):24–30. https://doi.org/10.1016/S1566-0702(02)00055-3 PMID:12171253
9 Noto H, Roppolo JR, Steers WD, de Groat WC. Electrophysiological analysis of the ascending and descending components of the micturition reflex pathway in the rat. Brain Res. 1991 May;549(1):95–105. https://doi.org/10.1016/0006-8993(91)90604-T PMID:1893257
10 Kruse MN, Mallory BS, Noto H, Roppolo JR, de Groat WC. Modulation of the spinobulbospinal micturition reflex pathway in cats. Am J Physiol. 1992 Mar;262(3 Pt 2):R478–84. PMID:1558219
11 Liu Z, Sakakibara R, Nakazawa K, Uchiyama T, Yamamoto T, Ito T, et al. Micturition-related neuronal firing in the periaqueductal gray area in cats. Neuroscience. 2004;126(4):1075–82. https://doi.org/10.1016/j.neuroscience.2004.04.033 PMID:15207340
12 Zare A, Schipper S, Stein W, Temel Y, van Koeveringe GA, Jahanshahi A. Electrophysiological responses of the ventrolateral periaqueductal gray matter neurons towards peripheral bladder stimulation. Brain Res Bull. 2018 Sep;142:116–21. https://doi.org/10.1016/j.brainresbull.2018.07.009 PMID:30016723
13 Sugaya K, Ogawa Y, Hatano T, Nishijima S, Matsuyama K, Mori S. Ascending and descending brainstem neuronal activity during cystometry in decerebrate cats. Neurourol Urodyn. 2003;22(4):343–50. https://doi.org/10.1002/nau.10115 PMID:12808711
14 Ito T, Sakakibara R, Nakazawa K, Uchiyama T, Yamamoto T, Liu Z, et al. Effects of electrical stimulation of the raphe area on the micturition reflex in cats. Neuroscience. 2006 Nov;142(4):1273–80. https://doi.org/10.1016/j.neuroscience.2006.06.044 PMID:16996219
15 Rocha I, Silva-Carvalho L, Spyer KM. Effect of stimulation of anterior hypothalamic area on urinary bladder function of the anesthetized rat. Clin Auton Res. 2004 Aug;14(4):264–9. https://doi.org/10.1007/s10286-004-0212-0 PMID:15316845
16 Verstegen AM, Klymko N, Zhu L, Mathai JC, Kobayashi R, Venner A, et al. Non-Crh glutamatergic neurons in Barrington’s nucleus control micturition via glutamatergic afferents from the midbrain and hypothalamus. Curr Biol. 2019 Sep;29(17):2775–2789.e7. https://doi.org/10.1016/j.cub.2019.07.009 PMID:31422881
17 Sakakibara R, Nakazawa K, Uchiyama T, Yoshiyama M, Yamanishi T, Hattori T. Micturition-related electrophysiological properties in the substantia nigra pars compacta and the ventral tegmental area in cats. Auton Neurosci. 2002 Nov;102(1-2):30–8. https://doi.org/10.1016/S1566-0702(02)00180-7 PMID:12492133
18 Yamamoto T, Sakakibara R, Hashimoto K, Nakazawa K, Uchiyama T, Liu Z, et al. Striatal dopamine level increases in the urinary storage phase in cats: an in vivo microdialysis study. Neuroscience. 2005;135(1):299–303. https://doi.org/10.1016/j.neuroscience.2005.06.007 PMID:16111828
19 Yamamoto T, Sakakibara R, Nakazawa K, Uchiyama T, Shimizu E, Hattori T. Effects of electrical stimulation of the striatum on bladder activity in cats. Neurourol Urodyn. 2009;28(6):549–54. https://doi.org/10.1002/nau.20682 PMID:19214990
20 Sakakibara R, Nakazawa K, Uchiyama T, Yoshiyama M, Yamanishi T, Hattori T. Effects of subthalamic nucleus stimulation on the micturation reflex in cats. Neuroscience. 2003;120(3):871–5. https://doi.org/10.1016/S0306-4522(03)00319-1 PMID:12895527
21 Yamamoto T, Uchiyama T, Sakakibara R, Taniguchi J, Kuwabara S. The subthalamic activity and striatal monoamine are modulated by subthalamic stimulation. Neuroscience. 2014 Feb;259:43–52. https://doi.org/10.1016/j.neuroscience.2013.11.034 PMID:24291727
22 Yamamoto T, Sakakibara R, Uchiyama T, Kuwabara S. Subthalamic stimulation inhibits bladder contraction by modulating the local field potential and catecholamine level of the medial prefrontal cortex. Front Neurosci. 2020 Sep;14:917. https://doi.org/10.3389/fnins.2020.00917 PMID:33013304
23 Koyama K. Effects of amygdaloid and olfactory tubercle stimulation on efferent activities of the vesical branch of the pelvic nerve and the urethral branch of the pudendal nerve in dogs. Urol Int. 1991;47 Suppl 1:23–30. https://doi.org/10.1159/000282244 PMID:1659014
24 Yamamoto T, Sakakibara R, Nakazawa K, Uchiyama T, Shimizu E, Hattori T, et al. Neuronal activities of forebrain structures with respect to bladder contraction in cats. Neurosci Lett. 2010 Mar;473(1):42–7. https://doi.org/10.1016/j.neulet.2010.02.015 PMID:20153810
25 Brüggemann J, Vahle-Hinz C, Kniffki KD. Representation of the urinary bladder in the lateral thalamus of the cat. J Neurophysiol. 1993 Aug;70(2):482–91. https://doi.org/10.1152/jn.1993.70.2.482 PMID:8410150
26 Robbins MT, Uzzell TW, Aly S, Ness TJ. Characterization of thalamic neuronal responses to urinary bladder distention, including the effect of acute spinal lesions in the rat. J Pain. 2006 Mar;7(3):218–24. https://doi.org/10.1016/j.jpain.2005.10.012 PMID:16516828
27 Sasaki M. Role of Barrington’s nucleus in micturition. J Comp Neurol. 2005 Dec;493(1):21–6. https://doi.org/10.1002/cne.20719 PMID:16255005
28 Sasaki M. Properties of Barrington’s neurones in cats: units that fire inversely with micturition contraction. Brain Res. 2005 Feb;1033(1):41–50. https://doi.org/10.1016/j.brainres.2004.11.016 PMID:15680338
29 Ito H, Sales AC, Fry CH, Kanai AJ, Drake MJ, Pickering AE. Probabilistic, spinally-gated control of bladder pressure and autonomous micturition by Barrington’s nucleus CRH neurons. eLife. 2020 Apr;9:e56605. https://doi.org/10.7554/eLife.56605 PMID:32347794
30 Keller JA, Chen J, Simpson S, Wang EH, Lilascharoen V, George O, et al. Voluntary urination control by brainstem neurons that relax the urethral sphincter. Nat Neurosci. 2018 Sep;21(9):1229–38. https://doi.org/10.1038/s41593-018-0204-3 PMID:30104734
31 Gjone R. Excitatory and inhibitory bladder responses to stimulation of ‘limbic’, diencephalic and mesencephalic structures in the cat. Acta Physiol Scand. 1966;66(1):91–102. https://doi.org/10.1111/j.1748-1716.1966.tb03171.x PMID:5327579
32 Nakagawa S. Onuf’s nucleus of the sacral cord in a South American monkey (Saimiri): its location and bilateral cortical input from area 4. Brain Res. 1980 Jun;191(2):337–44. https://doi.org/10.1016/0006-8993(80)91285-8 PMID:6769542
33 Sem-Jacobson CW. Depth electrographic stimulation of the human brain and behavior. Springfield: Thomas; 1968.
34 Patra S, Valls L, Heredia G, Burdette D, Elisevich K. Human left anterior cingulate stimulation elicits a reproducible micturition response. Stereotact Funct Neurosurg. 2019;97(4):278–81. https://doi.org/10.1159/000503886 PMID:31751999
35 Brusa L, Finazzi Agrò E, Petta F, Sciobica F, Torriero S, Lo Gerfo E, et al. Effects of inhibitory rTMS on bladder function in Parkinson’s disease patients. Mov Disord. 2009 Feb;24(3):445–8. https://doi.org/10.1002/mds.22434 PMID:19133657
36 Fukuyama H, Matsuzaki S, Ouchi Y, Yamauchi H, Nagahama Y, Kimura J, et al. Neural control of micturition in man examined with single photon emission computed tomography using 99mTc-HMPAO. Neuroreport. 1996 Nov;7(18):3009–12. https://doi.org/10.1097/00001756-199611250-00042 PMID:9116229
37 Blok BF, Willemsen AT, Holstege G. A PET study on brain control of micturition in humans. Brain. 1997 Jan;120(Pt 1):111–21. https://doi.org/10.1093/brain/120.1.111 PMID:9055802
38 Athwal BS, Berkley KJ, Hussain I, Brennan A, Craggs M, Sakakibara R, et al. Brain responses to changes in bladder volume and urge to void in healthy men. Brain. 2001 Feb;124(Pt 2):369–77. https://doi.org/10.1093/brain/124.2.369 PMID:11157564
39 DasGupta R, Kavia RB, Fowler CJ. Cerebral mechanisms and voiding function. BJU Int. 2007 Apr;99(4):731–4. https://doi.org/10.1111/j.1464-410X.2007.06749.x PMID:17378838
40 Jarrahi B, Mantini D, Balsters JH, Michels L, Kessler TM, Mehnert U, et al. Differential functional brain network connectivity during visceral interoception as revealed by independent component analysis of fMRI TIME-series. Hum Brain Mapp. 2015 Nov;36(11):4438–68. https://doi.org/10.1002/hbm.22929 PMID:26249369
41 Coolen RL, Groenendijk IM, Blok BF. Recent advances in neuroimaging of bladder, bowel and sexual function. Curr Opin Urol. 2020 Jul;30(4):480–5. https://doi.org/10.1097/MOU.0000000000000772 PMID:32427628
42 Jarrahi B, Kollias S. Effects of visceral interoception on topological properties of the brain – A graph theory analysis of resting state fMRI. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1116–9. https://doi.org/10.1109/EMBC44109.2020.9175465 PMID:33018182
43 Pang D, Gao Y, Liao L. Responses of functional brain networks to bladder control in healthy adults: a study using regional homogeneity combined with independent component analysis methods. Int Urol Nephrol. 2021 May;53(5):883–91. https://doi.org/10.1007/s11255-020-02742-1 PMID:33523398
44 Tsunoyama K, Sakakibara R, Takahashi O, Sugiyama M, Uchiyama T, Tateno F, et al. How the bladder senses? A five-grade measure. Low Urin Tract Symptoms. 2013 Jan;5(1):17–22. https://doi.org/10.1111/j.1757-5672.2012.00156.x PMID:26663243
45 Sakakibara R, Tateno F, Sugiyama M, Takahashi O, Nishimura H, Kishi M, et al. How to measure bladder sensation in peripheral nerve diseases? Curr Bladder Dysfunct Rep. 2017;12(4):241–5. https://doi.org/10.1007/s11884-017-0451-2.
46 Tateno F, Sakakibara R, Aiba Y, Takahashi O, Shimizu A, Oki T. Increased bladder sensation without detrusor overactivity revisited: use of a five-grade sensory measure. Low Urin Tract Symptoms. 2020 May;12(2):162–6. https://doi.org/10.1111/luts.12298 PMID:31833660
47 Sakakibara R, Tsunoyama K, Takahashi O, Sugiyama M, Kishi M, Ogawa E, et al. Real-time measurement of oxyhemoglobin concentration changes in the frontal micturition area: an fNIRS study. Neurourol Urodyn. 2010 Jun;29(5):757–64. https://doi.org/10.1002/nau.20815 PMID:20583001
48 Sakakibara R, Tateno F, Yano M, Takahashi O, Sugiyama M, Ogata T, et al. Imidafenacin on bladder and cognitive function in neurologic OAB patients. Clin Auton Res. 2013 Aug;23(4):189–95. https://doi.org/10.1007/s10286-013-0200-3 PMID:23820664
49 Sakakibara R, Tateno F, Yano M, Takahashi O, Aiba Y, Yamamoto T. Fesoterodine normalizes the brain function in overactive bladder patients due to central nervous system lesion: A real-time measure of oxyhemoglobin concentration changes during urodynamics. Int J Urol. 2019 Oct;26(10):1014–5. https://doi.org/10.1111/iju.14072 PMID:31309606
50 Wyndaele JJ. Studies on sensory threshold of different parts of the lower urinary tract measured electrically. Eur Urol. 1991;19(2):121–4. https://doi.org/10.1159/000473599 PMID:2022214
51 Haldeman S, Bradley WE, Bhatia NN, Johnson BK. Pudendal evoked responses. Arch Neurol. 1982 May;39(5):280–3. https://doi.org/10.1001/archneur.1982.00510170022006 PMID:7073545
52 McGee MJ, Swan BD, Danziger ZC, Amundsen CL, Grill WM. Multiple reflex pathways contribute to bladder activation by intraurethral stimulation in persons with spinal cord injury. Urology. 2017 Nov;109:210–5. https://doi.org/10.1016/j.urology.2017.07.041 PMID:28801220
53 Markland C, Bradley W, Chou S, Merrill D, Westgate H. Sacral nerve stimulation. A diagnostic test of bladder innervation. Br J Urol. 1971 Aug;43(4):453–9. https://doi.org/10.1111/j.1464-410X.1971.tb12068.x PMID:4937823
54 Averbeck MA, Moreno-Palacios J, Aparicio A. Is there a role for sacral neuromodulation in patients with neurogenic lower urinary tract dysfunction? Int Braz J Urol. 2020;46(6):891–901. https://doi.org/10.1590/s1677-5538.ibju.2020.99.10 PMID:32758301
55 Assmann R, Douven P, Kleijnen J, van Koeveringe GA, Joosten EA, Melenhorst J, et al. Stimulation parameters for sacral neuromodulation on lower urinary tract and bowel dysfunction-related clinical outcome: A systematic review. Neuromodulation. 2020 Dec;23(8):1082–93. https://doi.org/10.1111/ner.13255 PMID:32830414
56 Abouassaly R, Liu G, Yamada Y, Ukimura O, Daneshgari F. Efficacy of a novel device for assessment of autonomic sensory function in the rat bladder. J Urol. 2008 Mar;179(3):1167–72. https://doi.org/10.1016/j.juro.2007.10.027 PMID:18206176
57 Bicer F, Kim JY, Horowitz A, Daneshgari F, Liu G. Assessment of bladder sensation in mice with a novel device. Urology. 2014 Aug;84(2):490.e1–6. https://doi.org/10.1016/j.urology.2014.04.024 PMID:24958485
58 De Wachter S, Van Meel TD, Wyndaele JJ. Study of the afferent nervous system and its evaluation in women with impaired detrusor contractility treated with bethanechol. Urology. 2003 Jul;62(1):54–8. https://doi.org/10.1016/S0090-4295(03)00246-2 PMID:12837422
59 Yokoyama T, Nozaki K, Fujita O, Nose H, Inoue M, Kumon H. Role of C afferent fibers and monitoring of intravesical resiniferatoxin therapy for patients with idiopathic detrusor overactivity. J Urol. 2004 Aug;172(2):596–600. https://doi.org/10.1097/01.ju.0000132769.71014.b5 PMID:15247740
60 Kenton K, Simmons J, FitzGerald MP, Lowenstein L, Brubaker L. Urethral and bladder current perception thresholds: normative data in women. J Urol. 2007 Jul;178(1):189–92. https://doi.org/10.1016/j.juro.2007.03.032 PMID:17499783
61 Kenton K, Lowenstein L, Brubaker L. Tolterodine causes measurable restoration of urethral sensation in women with urge urinary incontinence. Neurourol Urodyn. 2010 Apr;29(4):555–7. https://doi.org/10.1002/nau.20804 PMID:19771598
62 Van Meel TD, De Wachter S, Wyndaele JJ. The effect of intravesical oxybutynin on the ice water test and on electrical perception thresholds in patients with neurogenic detrusor overactivity. Neurourol Urodyn. 2010 Mar;29(3):391–4. https://doi.org/10.1002/nau.20785 PMID:19787712
63 Fujihara A, Ukimura O, Iwata T, Miki T. Neuroselective measure of the current perception threshold of A-delta and C-fiber afferents in the lower urinary tract. Int J Urol. 2011 May;18(5):341–9. https://doi.org/10.1111/j.1442-2042.2011.02749.x PMID:21443728
64 Vijaya G, Digesu GA, Derpapas A, Hendricken C, Fernando R, Khullar V. Antimuscarinic effects on current perception threshold: a prospective placebo control study. Neurourol Urodyn. 2012 Jan;31(1):75–9. https://doi.org/10.1002/nau.21194 PMID:22038939
65 van der Lely S, Kessler TM, Mehnert U, Liechti MD. Scalp topography of lower urinary tract sensory evoked potentials. Brain Topogr. 2020 Nov;33(6):693–709. https://doi.org/10.1007/s10548-020-00796-z PMID:33067692
66 Matsushita M, Nakasato N, Nakagawa H, Kanno A, Kaiho Y, Arai Y. Primary somatosensory evoked magnetic fields elicited by sacral surface electrical stimulation. Neurosci Lett. 2008 Jan;431(1):77–80. https://doi.org/10.1016/j.neulet.2007.11.025 PMID:18162313
67 Bradley WE. Cerebro-cortical innervation of the urinary bladder. Tohoku J Exp Med. 1980 May;131(1):7–13. https://doi.org/10.1620/tjem.131.7 PMID:6250250
68 Haldeman S, Bradley WE, Bhatia NN, Johnson BK. Pudendal evoked responses. Arch Neurol. 1982 May;39(5):280–3. https://doi.org/10.1001/archneur.1982.00510170022006 PMID:7073545
69 Sakakibara R. Lower urinary tract dysfunction in patients with brain lesions. Handb Clin Neurol. 2015;130:269–87. https://doi.org/10.1016/B978-0-444-63247-0.00015-8 PMID:26003249
70 Michels L, Blok BF, Gregorini F, Kurz M, Schurch B, Kessler TM, et al. Supraspinal control of urine storage and micturition in men—an fMRI study. Cereb Cortex. 2015 Oct;25(10):3369–80. https://doi.org/10.1093/cercor/bhu140 PMID:24969474
71 Zhao L, Liao L, Gao Y. Brain functional connectivity during storage based on resting state functional magnetic resonance imaging with synchronous urodynamic testing in healthy volunteers. Brain Imaging Behav. 2020;•••: https://doi.org/10.1007/s11682-020-00362-y PMID:32725470
72 Groenendijk IM, Mehnert U, Groen J, Clarkson BD, Scheepe JR, Blok BF. A systematic review and activation likelihood estimation meta-analysis of the central innervation of the lower urinary tract: pelvic floor motor control and micturition. PLoS One. 2021 Feb;16(2):e0246042. https://doi.org/10.1371/journal.pone.0246042 PMID:33534812
73 Tadic SD, Griffiths D, Schaefer W, Resnick NM. Abnormal connections in the supraspinal bladder control network in women with urge urinary incontinence. Neuroimage. 2008 Feb;39(4):1647–53. https://doi.org/10.1016/j.neuroimage.2007.10.059 PMID:18089297
74 Griffiths D, Tadic SD. Bladder control, urgency, and urge incontinence: evidence from functional brain imaging. Neurourol Urodyn. 2008;27(6):466–74. https://doi.org/10.1002/nau.20549 PMID:18092336
75 Tai C, Wang J, Jin T, Wang P, Kim SG, Roppolo JR, et al. Brain switch for reflex micturition control detected by FMRI in rats. J Neurophysiol. 2009 Nov;102(5):2719–30. https://doi.org/10.1152/jn.00700.2009 PMID:19741099
76 Yao J, Zhang Q, Liao X, Li Q, Liang S, Li X, et al. A corticopontine circuit for initiation of urination. Nat Neurosci. 2018 Nov;21(11):1541–50. https://doi.org/10.1038/s41593-018-0256-4 PMID:30361547
77 Haruta H, Sakakibara R, Ogata T, Panicker J, Fowler CJ, Tateno F, et al. Inhibitory control task is decreased in vascular incontinence patients. Clin Auton Res. 2013 Apr;23(2):85–9. https://doi.org/10.1007/s10286-013-0187-9 PMID:23334165
78 Haruta H, Sakakibara R, Ogata T, Tateno F, Kishi M, Aiba Y, et al. Frontal executive function and the bladder: A study of dementia with Lewy bodies. Neurol Clin Neurosci. 2018;7(1):22–5. https://doi.org/10.1111/ncn3.12237.
79 Choi EY, Tanimura Y, Vage PR, Yates EH, Haber SN. Convergence of prefrontal and parietal anatomical projections in a connectional hub in the striatum. Neuroimage. 2017 Feb;146:821–32. https://doi.org/10.1016/j.neuroimage.2016.09.037 PMID:27646127
80 Shepherd GM, Griller S. Handbook of brain microcircuits. Oxford: Oxford University Press; 2010.ISBN: 978-0190636111. https://doi.org/10.1093/med/9780195389883.001.0001
81 Hupalo S, Martin AJ, Green RK, Devilbiss DM, Berridge CW. Prefrontal corticotropin-releasing factor (CRF) neurons act locally to modulate frontostriatal cognition and circuit function. J Neurosci. 2019 Mar;39(11):2080–90. https://doi.org/10.1523/JNEUROSCI.2701-18.2019 PMID:30651328
82 Sha Z, Versace A, Edmiston EK, Fournier J, Graur S, Greenberg T, et al. Functional disruption in prefrontal-striatal network in obsessive-compulsive disorder. Psychiatry Res Neuroimaging. 2020 Jun;300:111081. https://doi.org/10.1016/j.pscychresns.2020.111081 PMID:32344156
83 Yamamoto T, Sakakibara R, Nakazawa K, Uchiyama T, Shimizu E, Hattori T. Effects of electrical stimulation of the striatum on bladder activity in cats. Neurourol Urodyn. 2009;28(6):549–54. https://doi.org/10.1002/nau.20682 PMID:19214990
84 Sakakibara R, Nakazawa K, Uchiyama T, Yoshiyama M, Yamanishi T, Hattori T. Effects of subthalamic nucleus stimulation on the micturation reflex in cats. Neuroscience. 2003;120(3):871–5. https://doi.org/10.1016/S0306-4522(03)00319-1 PMID:12895527
85 Herzog J, Weiss PH, Assmus A, Wefer B, Seif C, Braun PM, et al. Improved sensory gating of urinary bladder afferents in Parkinson’s disease following subthalamic stimulation. Brain. 2008 Jan;131(Pt 1):132–45. PMID:17977862
86 Sakakibara R, Kishi M, Ogawa E, Tateno F, Uchiyama T, Yamamoto T, et al. Bladder, bowel, and sexual dysfunction in Parkinson’s disease. Parkinsons Dis. 2011;2011:924605. https://doi.org/10.4061/2011/924605 PMID:21918729
87 Sakakibara R, Tateno F, Yamamoto T, Uchiyama T, Yamanishi T. Urological dysfunction in synucleinopathies: epidemiology, pathophysiology and management. Clin Auton Res. 2018 Feb;28(1):83–101. https://doi.org/10.1007/s10286-017-0480-0 PMID:29124503
88 Terayama K, Sakakibara R, Ogawa A, Haruta H, Akiba T, Nagao T, et al. Weak detrusor contractility correlates with motor disorders in Parkinson’s disease. Mov Disord. 2012 Dec;27(14):1775–80. https://doi.org/10.1002/mds.25225 PMID:23080035
89 Benagiano V, Rizzi A, Lorusso L, Flace P, Saccia M, Cagiano R, et al. The functional anatomy of the cerebrocerebellar circuit: A review and new concepts. J Comp Neurol. 2018 Apr;526(5):769–89. https://doi.org/10.1002/cne.24361 PMID:29238972
90 Beuriat PA, Cohen-Zimerman S, Smith GN, Krueger F, Gordon B, Grafman J. A new insight on the role of the cerebellum for executive functions and emotion processing in adults. Front Neurol. 2020 Dec;11:593490. https://doi.org/10.3389/fneur.2020.593490 PMID:33424746
91 Huang TF, Yang CP, Yang SL. The role of the fastigial nucleus in bladder control. Exp Neurol. 1979 Dec;66(3):674–81. https://doi.org/10.1016/0014-4886(79)90212-7 PMID:488245
92 Huang TF, Yang CP, Yang SL. The role of the fastigial nucleus in bladder control. Exp Neurol. 1979 Dec;66(3):674–81. https://doi.org/10.1016/0014-4886(79)90212-7 PMID:488245
93 Tateno F, Sakakibara R, Sugiyama M, Kishi M, Ogawa E, Takahashi O, et al. Lower urinary tract function in spinocerebellar ataxia 6. Low Urin Tract Symptoms. 2012 Jan;4(1):41–4. https://doi.org/10.1111/j.1757-5672.2011.00111.x PMID:26676458
94 Tai C, Wang J, Jin T, Wang P, Kim SG, Roppolo JR, et al. Brain switch for reflex micturition control detected by FMRI in rats. J Neurophysiol. 2009 Nov;102(5):2719–30. https://doi.org/10.1152/jn.00700.2009 PMID:19741099
95 Hornung JP. The human raphe nuclei and the serotonergic system. J Chem Neuroanat. 2003 Dec;26(4):331–43. https://doi.org/10.1016/j.jchemneu.2003.10.002 PMID:14729135
96 de Groat WC. Influence of central serotonergic mechanisms on lower urinary tract function. Urology. 2002 May;59(5 Suppl 1):30–6. https://doi.org/10.1016/S0090-4295(01)01636-3 PMID:12007520
97 Chiba H, Kitta T, Ohmura Y, Higuchi M, Kon M, Nakamura M, et al. Serotonin in the rat prefrontal cortex controls the micturition reflex through 5-hydroxytryptamine 2A and 5-hydroxytryptamine 7 receptors. Int J Urol. 2020 Aug;27(8):684–9. https://doi.org/10.1111/iju.14267 PMID:32533581
98 Sakakibara R, Ito T, Yamamoto T, Uchiyama T, Yamanishi T, Kishi M, et al. Depression, anxiety and the bladder. Low Urin Tract Symptoms. 2013 Sep;5(3):109–20. https://doi.org/10.1111/luts.12018 PMID:26663445
99 Carandini T, Mancini M, Bogdan I, Rae CL, Barritt AW, Sethi A, et al. Disruption of brainstem monoaminergic fibre tracts in multiple sclerosis as a putative mechanism for cognitive fatigue: a fixel-based analysis. Neuroimage Clin. 2021;30:102587. https://doi.org/10.1016/j.nicl.2021.102587; Online ahead of print. PMID:33610097
100 Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, et al.; Standardisation Sub-Committee of the International Continence Society. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Am J Obstet Gynecol. 2002 Jul;187(1):116–26. https://doi.org/10.1067/mob.2002.125704 PMID:12114899
101 Sakakibara R, Uchiyama T, Yamanishi T, Kishi M. Dementia and lower urinary dysfunction: with a reference to anticholinergic use in elderly population. Int J Urol. 2008 Sep;15(9):778–88. https://doi.org/10.1111/j.1442-2042.2008.02109.x PMID:18643858
102 Yokoyama O, Yotsuyanagi S, Akino H, Moriyama H, Matsuta Y, Namiki M. RNA synthesis in pons necessary for maintenance of bladder overactivity after cerebral infarction in rat. J Urol. 2003 May;169(5):1878–84. https://doi.org/10.1097/01.ju.0000052371.19582.5a PMID:12686866
103 Yokoyama O, Yoshiyama M, Namiki M, de Groat WC. Changes in dopaminergic and glutamatergic excitatory mechanisms of micturition reflex after middle cerebral artery occlusion in conscious rats. Exp Neurol. 2002 Jan;173(1):129–35. https://doi.org/10.1006/exnr.2001.7833 PMID:11771945
104 Ueki K. Disturbances of micturition observed in some patients with brain tumour. Neurol Med Chir (Tokyo). 1960;2(1-2):25–33. https://doi.org/10.2176/nmc.2.25
105 Andrew J, Nathan PW. Lesions on the anterior frontal lobes and disturbances of micturition and defaecation. Brain. 1964 Jun;87(2):233–62. https://doi.org/10.1093/brain/87.2.233 PMID:14188274
106 Andrew J, Nathan PW. The cerebral control of micturition. Proc R Soc Med. 1965 Jul;58(7):553–5. https://doi.org/10.1177/003591576505800733 PMID:19994438
107 Sakakibara R, Hattori T, Yasuda K, Yamanishi T. Micturitional disturbance after acute hemispheric stroke: analysis of the lesion site by CT and MRI. J Neurol Sci. 1996 Apr;137(1):47–56. https://doi.org/10.1016/0022-510X(95)00322-S PMID:9120487
108 Tateno F, Sakakibara R, Yano M, Takahashi O, Sugiyama M, Kishi M, et al. A young man with herpes simplex encephalitis: andrew and Nathan type urodynamic abnormality. Bladder (San Franc). 2014;1(1):e4. https://doi.org/10.14440/bladder.2014.25.
109 Sakakibara R, Hattori T, Yasuda K, Yamanishi T. Micturitional disturbance and the pontine tegmental lesion: urodynamic and MRI analyses of vascular cases. J Neurol Sci. 1996 Sep;141(1-2):105–10. https://doi.org/10.1016/0022-510X(96)00079-2 PMID:8880701
110 Kreydin EI, Gad P, Gao B, Liu CY, Ginsberg DA, Jann K. The effect of stroke on micturition associated brain activity: A pilot fMRI study. Neurourol Urodyn. 2020 Nov;39(8):2198–205. https://doi.org/10.1002/nau.24473 PMID:32761953
111 Sakakibara R, Tateno F, Aiba Y, Ogata T, Terada H, Inaoka T, et al. Prevalence of triple/dual disease (Alzheimer’s disease, Lewy body disease, and white matter disease). Neurol Clin Neurosci. 2020;8(4):171–6. https://doi.org/10.1111/ncn3.12377.
112 Tateno F, Sakakibara R, Ogata T, Kishi M, Tsuyusaki Y, Takahashi O, et al. Lower urinary tract function in dementia with Lewy bodies (DLB). Mov Disord. 2015 Mar;30(3):411–5. https://doi.org/10.1002/mds.25985 PMID:25356960
113 Kono M, Nakamura Y, Ishiura Y, Komatsu K, Kontani H, Namiki M. Central muscarinic receptor subtypes regulating voiding in rats. J Urol. 2006 Jan;175(1):353–7. https://doi.org/10.1016/S0022-5347(05)00004-2 PMID:16406941
114 Sakakibara R, Ogata T, Aiba Y, Tateno F, Uchiyama T, Yamamoto T. Does depression contribute to the bladder and bowel complaint in Parkinson’s disease patients? Mov Disord Clin Pract (Hoboken). 2020 Dec;8(2):240–4. https://doi.org/10.1002/mdc3.13124 PMID:33553494
115 Sakakibara R, Hattori T, Uchiyama T, Yamanishi T. Urinary function in elderly people with and without leukoaraiosis: relation to cognitive and gait function. J Neurol Neurosurg Psychiatry. 1999 Nov;67(5):658–60. https://doi.org/10.1136/jnnp.67.5.658 PMID:10519875
116 Hanyu H, Shimuzu S, Tanaka Y, Takasaki M, Koizumi K, Abe K. Cerebral blood flow patterns in Binswanger’s disease: a SPECT study using three-dimensional stereotactic surface projections. J Neurol Sci. 2004 May;220(1-2):79–84. https://doi.org/10.1016/j.jns.2004.02.011 PMID:15140610
117 Richter N, Michel A, Onur OA, Kracht L, Dietlein M, Tittgemeyer M, et al. White matter lesions and the cholinergic deficit in aging and mild cognitive impairment. Neurobiol Aging. 2017 May;53:27–35. https://doi.org/10.1016/j.neurobiolaging.2017.01.012 PMID:28208063
118 Tadic SD, Griffiths D, Murrin A, Schaefer W, Aizenstein HJ, Resnick NM. Brain activity during bladder filling is related to white matter structural changes in older women with urinary incontinence. Neuroimage. 2010 Jul;51(4):1294–302. https://doi.org/10.1016/j.neuroimage.2010.03.016 PMID:20302947
119 Kuchel GA, Moscufo N, Guttmann CR, Zeevi N, Wakefield D, Schmidt J, et al. Localization of brain white matter hyperintensities and urinary incontinence in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2009 Aug;64(8):902–9. https://doi.org/10.1093/gerona/glp037 PMID:19386575
120 Sakakibara R, Uchida Y, Ishii K, Kazui H, Hashimoto M, Ishikawa M, et al. the members of SINPHONI (Study of Idiopathic Normal Pressure Hydrocephalus On Neurological Improvement). Correlation of right frontal hypoperfusion and urinary dysfunction in iNPH: A SPECT study. Dement Geriatr Cogn Disord. 2011;32:1–10. https://doi.org/10.1159/000328972.
121 Sakakibara R, Uchida Y, Ishii K, Hashimoto M, Ishikawa M, Kazui H, et al.; Members of SINPHONI (Study of Idiopathic Normal Pressure Hydrocephalus On Neurological Improvement). Bladder recovery relates with increased mid-cingulate perfusion after shunt surgery in idiopathic normal-pressure hydrocephalus: a single-photon emission tomography study. Int Urol Nephrol. 2016 Feb;48(2):169–74. https://doi.org/10.1007/s11255-015-1162-2 PMID:26578001

Share
Back to top
Bladder, Electronic ISSN: 2327-2120 Print ISSN: TBA, Published by POL Scientific